
1/4

December 19, 2022

On the large number of ways of expressing Microsoft
Visual C++ compiler versions

devblogs.microsoft.com/oldnewthing/20221219-00

Raymond Chen

When you ask someone what version of the Microsoft Visual C++ compiler they’re using, or if

somebody tells you “This feature requires version X of the Microsoft Visual C++ compiler”,

you can get the answer is a large number of ways, because the Microsoft Visual C++ compiler

has apparently decided that if one version number is good, then more must be better.

The first version number that enters the picture is the name of the Visual Studio product the

compiler comes with. This is probably something like “Visual Studio YYYY” for some year,

like “Visual Studio 2019”.

The next version number is the product version of that Visual Studio product. For example,

“Visual Studio 2019 version 16.11.”

The next version number is the platform toolset that you specify in your project file, like

<PlatformToolset>v142</PlatformToolset> .

Another version number is the actual toolchain version, like “14.29”.

And then there’s the version number reported by the _MSC_VER predefined macro, like

“1929”.

On top of that is the version number reported by the _MSC_FULL_VER predefined macro,

like “192930100”.

And finally, there’s the version number reported by the compiler itself when you type cl

/? .

How are all of these version numbers related?

Product
name

?
 ⇔

Product
version

?
 ⇔

Platform
toolset

?
 ⇔

Toolchain ?
 ⇔

_MSC
_VER

?
 ⇔

_MSC
_
FULL
_VER

?
 ⇔

Com
ban

https://devblogs.microsoft.com/oldnewthing/20221219-00/?p=107601

2/4

Okay, let’s do the easy one first: The last three version numbers are related to each other in a

straightforward way. If the compiler’s self-reported version is aa.bb.ccccc.dd , then the

_MSC_VER is aabb and the _MSC_FULL_VER is aabbccccc . In other words, _MSC_VER =

aa * 100 + bb and _MSC_FULL_VER = aa * 10000000 + bb * 100000 + cc .

Okay, so that lets us build a relationship among the last three boxes: The compiler banner is

the basis for the other two.

The first two boxes are also related, but in a less obvious way: The product name and product

major version line up according to this table on Wikipedia. For example, Visual Studio 2019

corresponds to product versions 16.*.

The next two boxes also appear to be related, although I can’t find any official documentation

to that effect. The platform toolset appears to be the letter “v”, followed by the toolchain

major version, followed by the first digit of the minor version. For example, a toolchain

version of “14.29” corresponds to a platform toolset of “v142”.

That leaves three major categories: The Visual Studio product, the toolchain, and the

compiler. These three categories follow their own path, so you have to use a cheat sheet to see

how they correspond to each other.¹

Let’s build that cheat sheet. I got the raw data from this table on Wikipedia, with gaps filled

in from the archived Visual Studio release notes.

Name Product Toolset Toolchain
MSC

 VER

MSC
 FULL_

VER Compiler

Visual
 Studio
 2017

15.0 v141 14.1 1910 1910xxxxx 19.10.xxxxx

15.1

15.2

15.3 14.11 1911 1911xxxxx 19.11.xxxxx

15.4

15.5 14.12 1912 1912xxxxx 19.12.xxxxx

15.6 14.13 1913 1913xxxxx 19.13.xxxxx

15.7 14.14 1914 1914xxxxx 19.14.xxxxx

15.8 14.15 1915 1915xxxxx 19.15.xxxxx

15.9 14.16 1916 1916xxxxx 19.16.xxxxx

https://learn.microsoft.com/en-us/cpp/preprocessor/predefined-macros?view=msvc-170#microsoft-specific-predefined-macros
https://en.wikipedia.org/wiki/Visual_Studio#History
https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B#Internal_version_numbering
https://learn.microsoft.com/en-us/visualstudio/releases/

3/4

Visual
 Studio
 2019

16.0 v142 14.20 1920 1920xxxxx 19.20.xxxxx

16.1 14.21 1921 1921xxxxx 19.21.xxxxx

16.2 14.22 1922 1922xxxxx 19.22.xxxxx

16.3 14.23 1923 1923xxxxx 19.23.xxxxx

16.4 14.24 1924 1924xxxxx 19.24.xxxxx

16.5 14.25 1925 1925xxxxx 19.25.xxxxx

16.6 14.26 1926 1926xxxxx 19.26.xxxxx

16.7 14.27 1927 1927xxxxx 19.27.xxxxx

16.8 14.28 1928 1928xxxxx 19.28.xxxxx

16.9

16.10 14.29 1929 1929xxxxx 19.29.xxxxx

16.11

Visual
 Studio
 2022

17.0 v143 14.30 1930 1930xxxxx 19.30.xxxxx

17.1 14.31 1931 1931xxxxx 19.31.xxxxx

17.2 14.32 1932 1932xxxxx 19.32.xxxxx

17.3 14.33 1933 1933xxxxx 19.33.xxxxx

17.4 14.34 1934 1934xxxxx 19.34.xxxxx

But wait, the story isn’t over yet.

Internally, the compiler team delivers periodic compiler updates to the Windows team. These

updates are named LKG followed by a number, like “LKG14”, and there is an internal Web

site that maps LKG values to compiler version numbers. Fortunately, only people who work

at Microsoft need to worry about these LKG version numbers.

Bonus chatter: The term LKG stands for “Last Known Good”, meaning that it is the latest

version of the compiler that has been validated against the Windows code base. There is

another term FKG, which you think might stand for “First Known Good”, but it doesn’t. It

originally stood for “Fast Known Good” because it contained compilers even newer than the

Last Known Good. That policy has changed, and now the FKG is used for other purposes, but

the name FKG stuck, even though it’s completely wrong.

4/4

¹ It appears that starting in Visual Studio 2017, the compiler minor version increases by one

each time the toolchain minor version increases by one, so that’s handy. Starting in August

2017, the compiler version is equal to the toolchain version plus five. I don’t know whether

this is a rule or a coincidence.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

