
1/2

December 29, 2022

How can I detect programmatically whether Windows is
an N or KN version?

devblogs.microsoft.com/oldnewthing/20221229-00

Raymond Chen

A customer was dealing with a problem that occurred only when running on an N or KN

version of Windows. These versions of Windows are special versions that omit the

multimedia features.¹ Microsoft is legally required to offer these versions of Windows in

certain jurisdictions, although in practice, the number of people who buy them is vanishingly

small. (It sometimes feels like the sole reason those customers exist is to file bugs that

reproduce only on N and KN versions.)

The customer wanted to know how to detect that the user is running an N or KN version of

Windows, so they could disable the features of the product that depend upon multimedia

support.

The answer is that you don’t check whether you are on an N or KN version of Windows.

Rather, you check whether multimedia support is present.

Because the user, after buying an N or KN version of Windows (perhaps inadvertently), can

later download and install the Media Feature Pack and restore multimedia support. In that

case, they expect your program to enable its multimedia features.

So really, what you want to do is detect whether multimedia support is present. One way to

do that is to see if you can call the MFStartup function, and whether it succeeds. If not, then

Media Foundation is not available, and multimedia features are not available.

This particular customer had a Web-based app, in which case they can use

HTMLMediaElement.canPlayType to detect whether the system can play their media, and

skip the video if so.

Bonus chatter: The bug was that if you asked to see the training video, the video didn’t play

(expected), but the app also hung (not expected). The reason is that the app tried to play the

video roughly like this:

https://devblogs.microsoft.com/oldnewthing/20221229-00/?p=107623
https://support.microsoft.com/en-us/topic/media-feature-pack-list-for-windows-n-editions-c1c6fffa-d052-8338-7a79-a4bb980a700a

2/2

var video = document.queryselector("#training-video");
video.src = "/videos/training.mp4";
video.addEventListener("error", onVideoFinished);
video.addEventListener("ended", onVideoFinished);

If multimedia support is not present, the error event is raised immediate upon setting the

src property. But the code hasn’t registered a handler for that event, so the error event is

raised, but nobody is there to handle it. The app later adds a handler, but it’s too late. That’s

why the app appeared to hang.

To deal with errors that occur immediately, the app should register the event handlers before

setting the source.

(Note that canPlayType is still useful, even after they fix this race condition. That lets them

detect that the system cannot play the training video at all, and they can remove the “Play

training video” option from their interface, or replace it with an explanation of why the

training video is not available.)

¹ The KN version also omits Windows Messenger, but since Windows Messenger itself has

been discontinued, the distinction is meaningless in practice.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

