
1/3

January 24, 2023

Inside C++/WinRT: Apartment switching: The basic idea
devblogs.microsoft.com/oldnewthing/20230124-00

Raymond Chen

One of the features of C++/WinRT is that if you co_await  an IAsyncAction or

IAsyncOperation , the C++/WinRT library returns to the original COM apartment before

resuming the coroutine. This behavior is generally desirable because you expect that COM

objects prior to performing a co_await  are still usable after it returns.

This task is accomplished with the assistance of IContextCallback.

Here’s the basic idea:¹

inline int32_t __stdcall resume_apartment_callback( 
   com_callback_args* args) noexcept 
{ 
   coroutine_handle<>::from_address(args->data)(); 
   return 0; 
};

void resume_apartment( 
   com_ptr<IContextCallback> const& context, 
   std::coroutine_handle<> handle) 
{ 
   com_callback_args args{}; 
   args.data = handle.address(); 

   check_hresult( 
       context->ContextCallback(resume_apartment_callback, 
           &args, 
           guid_of<ICallbackWithNoReentrancyToApplicationSTA>(), 
           5, nullptr)); 
} 

To resume a coroutine synchronously in a particular context, we use the IContext ‐

Callback::Context Callback  method to ask COM to run a particular function in that

desired context. We convert the coroutine handle to a pointer to use as our reference data,

and in the callback, we convert the pointer back to a coroutine handle so we can invoke it,

thereby resuming the coroutine.

https://devblogs.microsoft.com/oldnewthing/20230124-00/?p=107746
https://devblogs.microsoft.com/oldnewthing/20191129-00/?p=103162


2/3

We can use this to build the apartment_context  object.

struct apartment_context 
{ 
   apartment_context() = default; 
   apartment_context(std::nullptr_t) : context(nullptr) { } 

   operator bool() const noexcept { return context != nullptr; } 
   bool operator!() const noexcept { return context == nullptr; } 

   com_ptr<IContextCallback> context = 
           capture<IContextCallback>(WINRT_IMPL_CoGetObjectContext); 
};

struct apartment_awaiter 
{ 
   apartment_context const& context; 

   bool await_ready() const noexcept 
   { 
       return false; 
   } 

   void await_suspend(coroutine_handle<> handle) 
   { 
       apartment_context extend_lifetime = context; 
       resume_apartment(context.context, handle); 
   } 

   void await_resume() const noexcept 
   { 
   } 
};

apartment_awaiter operator co_await(apartment_context const& context) 
{ 
   return { context }; 
} 

To construct an apartment_context , we call Co Get Object Context  (through the

C++/WinRT alias) to obtain an IContext Callback .

There is also a nullptr  constructor if you want to declare an empty apartment_context .

Empty contexts aren’t usable, but they are useful: They let you declare a variable and

initialize it with a proper context later.

To co_await  an apartment_context , we construct an apartment_awaiter  which

remembers the context being awaited, and the await_suspend  method uses it to call

resume_apartment() .



3/3

We can now add COM context support to our oversimplified Windows Runtime awaiter.

template <typename Async> 
struct await_adapter 
{ 
   await_adapter(Async const& async) : async(async) { } 

   Async const& async; 

   bool await_ready() const noexcept 
   { 
       return false; 
   } 

   void await_suspend(std::experimental::coroutine_handle<> handle) const 
   { 
       auto extend_lifetime = async; 
       async.Completed([ 
           handle, 
           context = apartment_context() 
       ](auto&& ...) 
       { 
           resume_apartment(context.context, handle); 
       }); 
   } 

   auto await_resume() const 
   { 
       return async.GetResults(); 
   } 
};

We capture an apartment_context  in the lambda and use resume_apartment()  to

resume the coroutine in that captured context.

This code is still flawed, though. We’ll continue the discussion next time.

¹ The C++/WinRT library does not #include <windows.h> . All of the dependencies on

Windows are wrapped inside parallel declarations within the C++/WinRT library. The com_

callback_args  structure, for example, is an ABI-equivalent version of the

ComCallData  structure.

 

 

https://devblogs.microsoft.com/oldnewthing/20230123-00/?p=107742

