
1/2

March 9, 2023

From a Windows app, how can I check whether there is
an app installed that implements a particular URI
scheme?, part 2

devblogs.microsoft.com/oldnewthing/20230309-00

Raymond Chen

Last time, we looked at detecting packaged apps which support a particular URI scheme.

Unpackaged apps do not have AppIds (in the Windows Store sense), so some of the

operations don’t work.

Function Packaged apps Unpackaged apps

Launcher.Find Uri Scheme Handlers Async Yes No

Launcher.Query Uri Support Async(uri) Yes Yes

Launcher.Query Uri Support Async(uri,
pfn)

Yes N/A

Launcher.Launch Uri Async Yes Yes

If you think about it, the reasons for the above entries are obvious:

Launcher.Find Uri Scheme Handlers Async returns a collection of AppInfo

objects, and AppInfo objects describe packaged apps. So it has no way to report an

unpackaged app.

Launcher.Query Uri Support Async(uri) just tells you whether the URI can be

launched or not. If it can be launched by an unpackaged app, then it will report

Available , just like the case where it can be launched by a packaged app. It doesn’t

tell you which app will launch it, so it doesn’t run into the problem of trying to describe

something that it has no way to describe.

Launcher.Query Uri Support Async(uri, pfn) takes a package family name, and

unpackaged apps don’t have a package family name, so it’s not even possible to specify

the unpackaged app you are querying for.

https://devblogs.microsoft.com/oldnewthing/20230309-00/?p=107922
https://devblogs.microsoft.com/oldnewthing/20230308-04/?p=107915

2/2

Launcher.Launch Uri Async tries to launch the URI and tells you whether it

succeeded. It doesn’t tell you anything about the app that ultimately handled the URI,

so unpackaged apps don’t cause any problems.

But what if you want to ask about unpackaged apps, too?

The SH Assoc Enum Handlers For Protocol By Application function gives you the apps (both

packaged and unpackaged) which can launch a particular URI scheme.

Today’s smart pointer library will be (rolls dice)¹ WRL.

Microsoft::WRL::ComPtr<IEnumAssocHandlers> e;
auto hr = SHAssocEnumHandlersForProtocolByApplication(L"http", IID_PPV_ARGS(&e));
if (SUCCEEDED(hr)) {
 Microsoft::WRL::ComPtr<IAssocHandler> handler;
 while (e->Next(1, &handler, nullptr) == S_OK) {
 PWSTR name;
 if (SUCCEEDED(handler->GetUIName(&name))) {
 printf("UI Name: %ls\n", name);
 CoTaskMemFree(name);
 }
 }
}

You can even ask pass the URI to a specific handler by calling the Invoke method:

HRESULT InvokeHandlerOnURI(IAssocHandler* handler, PCWSTR uri)
{
 Microsoft::WRL::ComPtr<IShellItem> item;
 RETURN_IF_FAILED(SHCreateItemFromParsingName(
 L"http://msn.com/", nullptr, IID_PPV_ARGS(&item)));
 Microsoft::WRL::ComPtr<IDataObject> dto;
 RETURN_IF_FAILED(item->BindToHandler(nullptr,
 BHID_DataObject, IID_PPV_ARGS(&dto)));
 RETURN_IF_FAILED(handler->Invoke(dto.Get()));
 return S_OK;
}

¹ Dirty secret: The dice are loaded.

