
1/5

March 13, 2023

What is the expression language used by the Resource
Compiler for non-preprocessor expressions?

devblogs.microsoft.com/oldnewthing/20230313-00

Raymond Chen

I noted some time ago that the Resource Compiler’s preprocessor is not the same as the C

preprocessor: Although it supports the same expression language, it does not support

directives like #pragma .

There is a second expression language used by the Resource Compiler, and that’s the one

used to define resources. Surprisingly, this expression language is different from the

preprocessor expression language.

For one thing, it has a much reduced set of operators, and no operator precedence. All binary

operators are left-associative, and parentheses can be used for grouping.

+ a Unary plus

- a Unary minus

~ a Unary bitwise negation

a + b Binary addition

a - b Binary subtraction

a | b Binary bitwise OR

a & b Binary bitwise AND

a | NOT b Binary bit clear (a & ~ b)

0x dddd Hexadecimal constant

0o dddd Octal constant

dddd Decimal constant

The NOT operator looks weird, but the idea is that you can write something like

https://devblogs.microsoft.com/oldnewthing/20230313-00/?p=107928
https://devblogs.microsoft.com/oldnewthing/20171004-00/?p=97126

2/5

WS_OVERLAPPEDWINDOW | NOT WS_MINIMIZEBOX

The WS_OVERLAPPED WINDOW style is a composite style:

#define WS_OVERLAPPEDWINDOW (WS_OVERLAPPED | \
 WS_CAPTION | \
 WS_SYSMENU | \
 WS_THICKFRAME | \
 WS_MINIMIZEBOX | \
 WS_MAXIMIZEBOX)

Appending a | NOT WS_MINIMIZEBOX means that you want all of the styles that come with

WS_OVERLAPPED WINDOW except for WS_MINIMIZE BOX .

Note that all operators have equal precedence, so 1 | 1 - 1 parses as (1 | 1) - 1 ,

which is 0. On the other hand, in C, the - operator has higher precedence than | , so the C

expression 1 | 1 - 1 parses as 1 | (1 - 1) , which is 1.

Since the preprocessor directives follow C expression rules, you can get into an odd situation

where the same expression comes out to a difference value depending on the context in

which you use it:

#if 1 | 1 - 1
DLG_MYDIALOG DIALOG 1 | 1 - 1, 0, 42, 42
BEGIN
END
#endif

The 1 | 1 - 1 in the #if statement is a preprocessor directive, and it evaluates to 1, so

the #if condition is truthy, and the contents generate a dialog resource. On the other hand,

when the compiler sees the 1 | 1 - 1 in the DIALOG statement, it is evaluated as a

resource constant, which produces zero.

Note also that the resource expression language lacks many operators, most notably

multiplication.

Another oddity is that the resource expression language uses 0o as the octal prefix rather

than a simple 0 like in C. This means that 010 evaluates to 8 when used in a preprocessor

expression, but it evaluates to 10 when used in a resource expression. This is particularly

troublesome if you put the definition in a header file that is shared with C/C++ code:

3/5

// resource.h
#define DLG_AWESOME 010

// contoso.rc
#include "resource.h"

DLG_AWESOME DIALOG ...

// contoso.cpp
#include "resource.h"

DialogBox(instance, MAKEINTRESOURCE(DLG_AWESOME), ...);

Even though they are both using DLG_AWESOME , the resource compiler sees it as a resource

expression, and the 010 is the decimal constant 10. On the other hand, the C++ compiler

sees it as as a C++ expression, and the 010 is an octal constant which evaluates to 8.

Moral of the story: Don’t use leading zeroes.

There’s another quirk of the resource compiler expression language, and that’s the concept of

the “initial value”.

In many cases, the value you are specifying comes with an initial value, and the expression

you provide is implicitly treated as combining with the initial value as if by logical “or” (|).

In other words, if you write some expression e , the Resource Compiler acts as if you had

actually written

initial | e

Note the absence of parentheses around the e .

Here is the table of initial values for various control types:

Control Underlying control With initial style

PUSHBUTTON Button BS_PUSHBUTTON | WS_TABSTOP

DEFPUSHBUTTON Button BS_DEFPUSHBUTTON | WS_TABSTOP

CHECKBOX Button BS_CHECKBOX | WS_TABSTOP

AUTOCHECKBOX Button BS_AUTOCHECKBOX | WS_TABSTOP

STATE3 Button BS_3STATE | WS_TABSTOP

AUTO3STATE Button BS_AUTO3STATE | WS_TABSTOP

RADIOBUTTON Button BS_RADIOBUTTON

4/5

AUTORADIOBUTTON Button BS_AUTORADIOBUTTON

GROUPBOX Button BS_GROUPBOX

PUSHBOX Button BS_PUSHBOX | WS_TABSTOP

LTEXT Static SS_LEFT | WS_GROUP

RTEXT Static SS_RIGHT | WS_GROUP

CTEXT Static SS_CENTER | WS_GROUP

ICON Static SS_ICON

EDITTEXT Edit ES_LEFT | WS_BORDER | WS_TABSTOP

LISTBOX ListBox LBS_NOTIFY | WS_BORDER

These initial styles are documented in the Resource Compiler documentation. For each

control, look at the section of the documentation that says “If you do not specify a style, the

default style is…” That default style is the value that your custom style is combined with.

It didn’t fit in the above table, but dialogs themselves have an initial style of WS_CAPTION if

you gave the dialog a CAPTION .

The “initial value” trick makes the NOT behavior a little more comprehensible, because it

lets you write things like

 LTEXT "Hello", -1, 4, 80, 160, 10, NOT WS_GROUP | SS_SUNKEN

The NOT WS_GROUP combines with the initial value to produce a net result of

SS_LEFT | WS_GROUP | NOT WS_GROUP | SS_SUNKEN

Translating this into C, you get

((SS_LEFT | WS_GROUP) & ~WS_GROUP) | SS_SUNKEN

which is SS_LEFT | SS_SUNKEN . The NOT WS_GROUP removes the WS_GROUP style that

came by default with the LTEXT statement.

Bonus chatter: Why are there two different expression languages?

The resource language is designed for use in resource statements. The NOT syntax, in

particular, is handy for removing styles from the initial styles that come with certain controls.

The preprocessor language is designed for use in preprocessor statements. And the

preprocessor language matches the C programming language because preprocessor

statements commonly occur in header files which are consumed by both the Resource

5/5

Compiler and the C/C++ compiler. It would be a very difficult bug to track down if a #if

statement in a header file evaluated differently depending on whether you included it from a

C/C++ file or from a resource file.

