
1/6

April 7, 2023

The case of the PasswordVault.Add call that the
customer thinks was hung

devblogs.microsoft.com/oldnewthing/20230407-00

Raymond Chen

A customer reported that one of their clients had a system that hung in a call to

PasswordVault.Add . They were unable to reproduce the problem on any of their

systems, but they were able to capture a Time Travel trace of the program on the client

system, and they asked for our help in figuring out why it was hung and what they can do

about it.

I opened the trace and found the point where they call PasswordVaule.Add() , then

stepped over the call to see what happened.

contoso!winrt::impl::consume_Windows_Security_Credentials_IPasswordVault<
 winrt::Windows::Security::Credentials::IPasswordVault>::Add:
00007ff7`4332dab0 sub rsp,28h
00007ff7`4332dab4 mov rcx,qword ptr [rcx]
00007ff7`4332dab7 mov rdx,qword ptr [rdx]
00007ff7`4332daba mov rax,qword ptr [rcx]
00007ff7`4332dabd mov rax,qword ptr [rax+30h]
00007ff7`4332dac1 call qword ptr [contoso!__guard_dispatch_icall_fptr
(00007ff7`433f4660)]

Time Travel Position: 1B5E2B:58
contoso!winrt::impl::consume_Windows_Security_Credentials_IPasswordVault<
 winrt::Windows::Security::Credentials::IPasswordVault>::Add+0x11:
00007ff7`4332dac1 call qword ptr [contoso!__guard_dispatch_icall_fptr
(00007ff7`433f4660)]

0:000> p
Time Travel Position: 1B69BC:98
contoso!winrt::check_hresult
 [inlined in
contoso!winrt::impl::consume_Windows_Security_Credentials_IPasswordVault<
 winrt::Windows::Security::Credentials::IPasswordVault>::Add+0x17]:
00007ff7`4332dac7 85c0 test eax,eax

Hey, the call returned after all. It didn’t hang.

https://devblogs.microsoft.com/oldnewthing/20230407-00/?p=108026
https://docs.microsoft.com/windows-hardware/drivers/debugger/time-travel-debugging-overview

2/6

What was the result?

0:000> r
rax=0000000080070425 rbx=0000000000000000 rcx=a7d3b6100ff30000
rdx=000000000000010b rsi=ffffffffffffffff rdi=000001d030897d80
rip=00007ff74332dac7 rsp=00000010d3bfca90 rbp=00000010d3bfe0a0
r8=0000000000000001 r9=0000000000000001 r10=0000000000001410
r11=00000010d3bfca70 r12=00000010d3bfe500 r13=000001d030897d88
r14=0000000000000000 r15=000001d03020c6e0
iopl=0 nv up ei pl zr na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246
contoso!winrt::check_hresult
 [inlined in
contoso!winrt::impl::consume_Windows_Security_Credentials_IPasswordVault<
 winrt::Windows::Security::Credentials::IPasswordVault>::Add+0x17]:
00007ff7`4332dac7 85c0 test eax,eax

Aha, the call failed with error 0x80070425 which is the error code ERROR_SERVICE_

CANNOT_ACCEPT_CTRL converted via HRESULT_FROM_WIN32 to an HRESULT .

The call failed, and the C++/WinRT projection turns this into a C++ exception. What

happened to that exception?

The customer was kind enough to share their source code, so we could continue our

investigation without having to do reverse-engineering of their app.

3/6

namespace winrt::Contoso::implementation
{
 struct AccountPage : AccountPageT<AccountPage>
 {
 ...

 winrt::Windows::Security::Credentials::PasswordVault m_passwordVault;
 };

 IAsyncAction AccountPage::UpdatePassword()
 {
 ...
 /* Save the user's password to the password vault */
 auto cred = PasswordCredential(...);
 m_passwordVault.Add(cred);
 ...
 }

 IAsyncAction AccountPage::ConnectButton_Click(
 IInspectable const&, RoutedEventArgs const&)
 {
 // keep "this" alive while awaiting.
 auto strong_this = get_strong();

 ...

 co_await UpdatePassword();

 ...
 }
}

Now we can see what happens to the exception.

The exception from m_passwordVault.Add(cred) is not explicit caught by

UpdatePassword() so it gets caught by the coroutine infrastructure and puts the

IAsyncAction into a failed state. This and initiates the resumption of the awaiter,

ConnectButton_Click .

When ConnectButton_Click resumes, the co_await asks the IAsyncAction what

happened, and it says, “Oh, I failed. Here’s the HRESULT .” This triggers a new exception to

be thrown, and since this goes uncaught by ConnectButton_Click , the coroutine

infrastructure catches it and puts the outer IAsyncAction into a failed state.

But nobody is awaiting the outer IAsyncAction .

Windows Runtime event handlers are called when the event occurs, but the event handler

returns only an HRESULT at the ABI layer (which is void at the projection layer). Although

we declared our event handler as returning IAsyncAction , that return value is simply

4/6

discarded by the projection.

In general, the CRTP wrappers provided by C++/WinRT use duck typing: Your CRTP derived

class need only provide a method which can be called with the formal parameters, and whose

return value can be converted to the formal return value. It need not actually accept or return

exactly those types, as long as the conversion is possible.

For example, if you are implementing a C++/WinRT method whose formal signature is

int64_t DoSomething(Widget widget);

your implementation can be

int32_t DoSomething(IInspectable const& object, int extra = 0);

The projection will do something like this:

int64_t retval = DoSomething(widget);

And that does compile. The widget parameter is a Widget , but an IInspectable

const& can bind to a Widget . The extra parameter defaults to zero. And the return value

can be converted from int32_t to int64_t .

You have been taking advantage of this without realizing it: Sometimes your implementation

methods take a parameter const reference, and sometimes it takes it by value (if it needs to

be kept alive across a suspension point).

Anyway, what happens is that the projection calls ConnectButton_Click , which returns

an IAsyncAction , and the projection discards it. We saw last time that discarding an

IAsyncAction ignores any exception that may have occurred in the coroutine.

The customer is misinterpreting an ignored exception as a hang.

If you are writing an event handler that is a coroutine, you probably should use

winrt::fire_and_forget instead of IAsyncAction . If you use IAsyncAction , then

any unhandled exceptions will just be ignored, and that’s probably going to leave you

scratching your head. On the other hand, winrt::fire_and_forget treats unhandled

exceptions as fatal errors, and you’ll get a crash report from your customer so you can

diagnose what went wrong.

And then once you turn unhandled exceptions into fatal errors, you may decide that you want

to handle those exceptions after all.

https://devblogs.microsoft.com/oldnewthing/20230406-00/?p=108023

5/6

 IAsyncAction AccountPage::UpdatePassword()
 {
 ...
 /* Save the user's password to the password vault */
 auto cred = PasswordCredential(...);
 try {
 m_passwordVault.Add(cred);
 { catch (...) {
 LogFailure("Adding credentials", winrt::to_hresult());
 WarnUser("Unable to save credentials for next time");
 }
 ...
 }

Bonus chatter: But what was causing the ERROR_SERVICE_CANNOT_ACCEPT_CTRL

error in the first place?

One reason for this error is that the Credential Manager service could not be started. In this

case, the reason was that the customer had disabled the service.

On the “Is it okay to disable this service?” page, the Credential Manager service is listed as

Credential Manager

Service name VaultSvc

Description
Provides secure storage and retrieval of credentials to users,
applications and security service packages.

Installation Always installed

Startup type Manual

Recommendation No guidance

Each service on the system is categorized as follows:

Should Disable: A security-focused enterprise will most likely prefer to disable this
service and forego its functionality (see additional details below).
OK to Disable: This service provides functionality that is useful to some but not all
enterprises, and security-focused enterprises that don’t use it can safely disable it.
Do Not Disable: Disabling this service will impact essential functionality or prevent
specific roles or features from functioning correctly. Therefore it should not be disabled.
(No guidance): The impact of disabling these services has not been fully evaluated.
Therefore, the default configuration of these services should not be changed.

(Emphasis mine.)

https://docs.microsoft.com/en-us/windows-server/security/windows-services/security-guidelines-for-disabling-system-services-in-windows-server

6/6

Bonus chatter: The customer confirmed that the client had disabled the Credential

Manager service on the system. Re-enabling it fixed the problem.

