
1/3

April 24, 2023

Why is std::hardware_destructive_interference_size a
compile-time constant instead of a run-time value?

devblogs.microsoft.com/oldnewthing/20230424-00

Raymond Chen

C++17 added a new compile time constant std::hardware_destructive_

interference_size which tells you (basically) the size of a cache line. The purpose of

this is to allow you to lay out your structures in a way that avoids false sharing.¹

But how does the compiler know what the cache line size will be of the CPU the program will

eventually be run on? Shouldn’t this be a run-time value instead of a compile-time value?

Well yes, the actual size of the cache line isn’t know until run-time, because it is only then

that the program meets a CPU. But really, you want this to be a compile-time constant, even

if it’s the wrong compile-time constant.

Structure layouts are determined at compile time, and you’re going to be using std::

hardware_destructive_interference_size as part of a alignas() , which requires

a compile-time constant.

So the compiler picks a “most likely” value for you to optimize for.

If you really want your code to adapt to the run-time cache size, you can generate multiple

versions of the structure and choose among them at run-time.

https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085

2/3

template<std::size_t alignment>
struct two_things
{
 alignas(alignment) std::atomic<int> evens;
 alignas(alignment) std::atomic<int> odds;
};

template<typename alignment>
void do_important_multithreaded_calculations_at_alignment()
{
 ... two_things<alignment> ...
}

void do_important_multithreaded_calculations()
{
 // operating system-specific code to get cache line size
 auto alignment = get_runtime_cache_line_size();

 if (alignment <= 32) {
 do_important_multithreaded_calculations_at_alignment<32>();
 } else if (alignment <= 64) {
 do_important_multithreaded_calculations_at_alignment<64>();
 } else {
 do_important_multithreaded_calculations_at_alignment<128>();
 }
}

So how does the compiler choose the value to report at compile time?

In a way, you told the compiler what value to use.

Based on the compiler command line options, you might be telling it to “optimize for Intel

Pentium” or “optimize for Intel Skylake” or “optimize for AMD K8.” The constant should

reflect the cache line size for the processor family you specified. If you end up not running on

that CPU, then your choices may end up suboptimal, but at least you’ll still get the right

answer, just perhaps not in the fastest way.

This may sound like a bummer, until you realize that the compiler is already making this

trade-off behind your back!

When choosing what code to generate, the compiler is already making assumptions about the

CPU it will be targeting. Depending on the CPU, the optimal code sequence may vary. For

example, on Pentium, you want to order the instructions so that the two internal CPU pipes

are both busy as much as possible. The optimal amount of loop unrolling may vary

depending on the CPU. The optimal placement of jump targets (to take advantage of branch

target buffers, branch prediction, and instruction fetching) may vary from CPU to CPU. Even

the best type of return instruction can vary. And what is optimal for one CPU may be

suboptimal for another.

https://devblogs.microsoft.com/dotnet/loop-alignment-in-net-6/
https://repzret.org/p/repzret/

3/3

The compiler is making these types of decisions all the time. It’s just that in the case of the

cache line, it’s letting you see it.

¹ There is a counterpart constant std::hardware_constructive_interference_size

which also specifies the size of a cache line, but this value is for laying out your structures so

that you can force values to share a cache line because they are used together. You can read

the full proposal for more details.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html

