
1/6

May 8, 2023

What are the duck-typing requirements of _com_ptr_t?
devblogs.microsoft.com/oldnewthing/20230508-00

Raymond Chen

The great thing about COM smart pointer classes is that there are so many to choose from.

In general, the smart pointer classes don’t even care that the thing you’re wrapping isn’t even
a COM interface pointer. As long as your class supports appropriate method signatures, the
smart pointer classes will take them. This is a general property of C++ templates: If the
template type parameter supports the operations performed by the template, then it doesn’t
really matter where they came from. The case where you can run into trouble is when the
library does a blind cast of your pointer to IUnknown* (either via reinterpret_cast or more
commonly by a C-style cast), in which case the code is assuming that your class really does
derive from IUnknown.¹

So let’s look at the minimum requirements for simply using the COM smart pointer wrapper
as a way to manage object lifetime, without any actual COM functionality like changing
interfaces via QueryInterface. Here are the operations we’re looking for:

Default construction,
Construction from a raw pointer (AddRef),
Copy construction (AddRef),
Destruction (Release),
Attaching and detaching (adopting and relinquishing ownership),
Assignment to same-type raw pointer (AddRef),
Assignment to same-type smart pointer (AddRef),
Accessing the wrapped object,
Returning to empty state (Release),
Receiving a new pointer,
Bonus: Comparison.
Litmus test: Accidentally bypassing the wrapper.
Litmus test: Construction from other-type raw pointer.
Litmus test: Construction from other-type smart pointer.
Litmus test: Assignment from other-type raw pointer.
Litmus test: Assignment from other-type smart pointer.

https://devblogs.microsoft.com/oldnewthing/20230508-00/?p=108156
https://en.wikiquote.org/wiki/Grace_Hopper

2/6

In addition to some core operations, we have a bonus operation, as well as some litmus tests
to see what happens if you make a mistake.

We’ll start with the _com_ptr_t class that comes with the #import directive. All of our tests
will use the same basic framework. For the most part, our changes will be focused on the
highlighted portions.

3/6

// Dummy implementations of AddRef and Release for

// testing purposes only. In real code, they would

// manage the object reference count.

struct Test

{

 void AddRef() {}

 void Release() {}

 Test* AddressOf() { return this; }

};

struct Other

{

 void AddRef() {}

 void Release() {}

};

// Pull in the smart pointer library

// (this changes based on library)

#include <comdef.h>

extern IID IID_NeverDefined; // never defined

_COM_SMARTPTR_TYPEDEF(Test, IID_NeverDefined);

_COM_SMARTPTR_TYPEDEF(Other, IID_NeverDefined);

void test()

{

 Test test;

 // Default construction

 TestPtr ptr;

 // Construction from raw pointer

 TestPtr ptr2(&test);

 // Copy construction

 TestPtr ptr3(ptr2);

 // Attaching and detaching

 auto p = ptr3.Detach();

 ptr.Attach(p);

 // Assignment from same-type raw pointer

 ptr3 = &test;

 // Assignment from same-type smart pointer

 ptr3 = ptr;

 // Accessing the wrapped object

 // (this changes based on library)

 if (ptr.GetInterfacePtr() != &test) {

 std::terminate(); // oops

 }

 if (ptr->AddressOf() != &test) {

4/6

 std::terminate(); // oops

 }

 // Returning to empty state

 ptr3 = nullptr;

 // Receiving a new pointer

 // (this changes based on library)

 Test** out = &ptr3;

 // Bonus: Comparison.

 if (ptr == ptr2) {}

 if (ptr != ptr2) {}

 if (ptr < ptr2) {}

 // Litmus test: Accidentally bypassing the wrapper

 ptr->AddRef();

 ptr->Release();

 // Litmus test: Construction from other-type raw pointer

 Other other;

 TestPtr ptr4(&other);

 // Litmus test: Construction from other-type smart pointer

 OtherPtr optr;

 TestPtr ptr5(optr);

 // Litmus test: Assignment from other-type raw pointer

 ptr = &other;

 // Litmus test: Assignment from other-type smart pointer

 ptr = optr;

 // Destruction

}

The _COM_SMARTPTR_TYPEDEF macro that comes with the _com_ptr_t library requires you to
specify the IID that the alleged interface responds to. We give it a dummy interface ID in the
form of a reference to a variable that is never defined. This ensures a linker error if the code
ever tries to use that fake interface ID.

The _com_ptr_t passes the core functionality tests: The expected AddRef and Release
operations are performed.

Our test for receiving a new pointer simulates calling a function prototyped as

void GetTest(Test** out);

5/6

but instead of having to write a function that produces a Test object, we just put the
parameter in a variable. That way, we can just step through our test in the debugger to
confirm that everything behaves as desired.

To receive a pointer into the wrapper, use the & operator. This operator releases any previous
wrapped pointer before receiving the new one.

The _com_ptr_t fails the bonus test. The comparison operations fail with a compiler error
saying that it couldn’t find a QueryInterface method. That’s because _com_ptr_t uses COM
identity, so it needs to QueryInterface for the canonical unknown before performing the
comparison.

The _com_ptr_t fails the “accidental bypass” litmus test. There are two ways of releasing the
object that are dangerously similar:

ptr2.Release(); // good

ptr2->Release(); // bad

The good way asks the wrapper to release the pointer. This nulls out the wrapped pointer in
addition to calling its Release() method. On the other hand, the bad way asks the wrapper
for the wrapped pointer, and then calls the Release() method directly on the wrapped
pointer. This doesn’t update the wrapper, so when the wrapper destructs, you get a double-
release.

The fact that the member function to release the wrapped pointer is also called Release
makes this an easy trap to fall into.

The _com_ptr_t passes the litmus test: Both attempts to convert from another type of smart
pointer generate an error which complains that there is no QueryInterface method.

So let’s keep a little scorecard.

_com_ptr_t scorecard

Default construction Pass

Construct from raw pointer Pass

Copy construction Pass

Destruction Pass

Attach and detach Pass

Assign to same-type raw pointer Pass

6/6

Assign to same-type smart pointer Pass

Fetch the wrapped pointer GetInterfacePtr()

Access the wrapped object ->

Receive pointer via & release old

Release and receive pointer &

Preserve and receive pointer N/A

Return to empty state Pass

Comparison Not supported

Accidental bypass Fail

Construct from other-type raw pointer Pass

Construct from other-type smart pointer Pass

Assign from other-type raw pointer Pass

Assign from other-type smart pointer Pass

Next time, we’ll look at MFC’s IPTR.

¹ Many of these libraries are quite old and predate the fancy-pants reinterpret_cast
keyword. The only cast operator available at the time was the C-style cast, so that’s what
they used.

