
1/3

May 16, 2023

Summary of the duck-typing requirements of C++ COM
wrappers

devblogs.microsoft.com/oldnewthing/20230516-00

Raymond Chen

Here’s a summary of the tables we spent the past few days building. Points of interest are
highlighted.

 _com_ptr_t MFC IPTR
ATL
CComPtr WRL ComPtr

Default
construction

Pass Pass Pass Pass

Construct
from raw
pointer

Pass Pass Pass Pass

Copy
construction

Pass Pass Pass Pass

Destruction Pass Pass Pass Pass

Attach and
detach

Pass Pass Pass Pass

Assign to
same-type
raw pointer

Pass Pass Pass Pass

Assign to
same-type
smart
pointer

Pass Pass Pass Pass

Fetch the
wrapped
pointer

GetInterfacePtr() GetInterfacePtr() p, or
 implicit

conversion

Get()

https://devblogs.microsoft.com/oldnewthing/20230516-00/?p=108192


2/3

Access the
wrapped
object

-> -> ->
(suboptimal)

->

Receive
pointer via &

release old release old must be
empty

release old

Release
and receive
pointer

& & & ReleaseAndGetAd

Preserve
and receive
pointer

N/A N/A &p GetAddressOf()

Return to
empty state

Pass Pass Pass Pass

Comparison Fail N/A Pass Pass

Accidental
bypass

Fail Fail Pass Fail

Construct
from other-
type raw
pointer

Pass Pass Pass Pass

Construct
from other-
type smart
pointer

Pass Pass Pass Pass

Assign from
other-type
raw pointer

Pass Pass Pass Pass

Assign from
other-type
smart
pointer

Pass Pass Pass Pass

T can be
final

Yes Yes No Yes

T::Release
must return
ULONG

No No Yes Yes

T::Release
must be
__stdcall

No No Yes No



3/3

For the most part, all of the smart pointer wrappers can wrap pointers to non-COM objects,
provided they have AddRef and Release methods which increment and decrement the object
reference count.

ATL is the only one that protects against accidental bypass by using the “coloring” technique.
However, the cost is that the wrapped object may not be final. Furthermore, its
implementation of “coloring” is suboptimal if the underlying object does not derive from
IUnknown. (If it does, then the “coloring” has no overhead.)

The semantics of the & address-of operator vary greatly, a topic I had discussed some time
ago. ATL is the only one whose & operator does not release the pointer before producing the
address. C++/WinRT does not overload the & operator at all.

_com_ptr_t, IPTR, and C++/WinRT do not provide a way to access the wrapped pointer’s
address without freeing it.

Comparison operators break only in _com_ptr_t. (Comparison operators never worked with
IPTR, so there was nothing to break.)

C++/WinRT does not support constructing directly from a raw pointer. This is annoying
because the case we are most likely to use it for a non-IUnknown-derived class is specifically
to construct directly from this:

// Sadly doesn't work 
RegisterCallback([strongThis = winrt::com_ptr(this)] { ... }); 

ATL, WRL, and wil require that the Release method return the new reference count as a
ULONG. ATL even requires that the Release method be __stdcall.

The MFC IPTR macro is not really used any more, but I listed it in the table for completeness.
If you try to use it in a modern compiler, you will get warnings about its use of exception
specifiers, which were deprecated in C++17.

Glancing through the table, it seems that the least weird wrapper classes for wrapping types
that aren’t COM interfaces are WRL::ComPtr and wil::com_ptr. You do have to make sure
that your Release() method returns the new reference count, but this is likely something you
already have readily available, so returning it is not that big of an obstacle.

 
 


