
1/3

June 5, 2023

It’s great that you provide operator overloads, but it’s
also nice to have names

devblogs.microsoft.com/oldnewthing/20230605-00

Raymond Chen

Operator overloading.

Looks great. Reduces verbosity.

Until it doesn’t.

Consider this overloaded function call operator:

struct StorageLoader 
{ 
   template<typename DataType> 
   DataType operator()(StorageOptions<DataType> const* options); 
};

The idea is that you can use the function call operator on a Storage Loader object to load
data from storage, using a StorageOptions to describe how you want it to be loaded.

StorageOptions<Data1> data1Options; 
data1Options.ignore_missing(true); 

StorageLoader storageLoader; 
Data1 data1 = storageLoader(&data1Options); 

The parameter is accepted as a pointer so you can pass nullptr to indicate that you accept
all defaults.

// Oops, this doesn't work. 
Data1 data1 = storageLoader(nullptr); 

The nullptr doesn’t work because the compiler can’t read your mind to figure out which
overload you’re trying to call. You have to help it along, either by refining the type of the
parameter:

Data1 data1 = storageLoader(static_cast<StorageOptions<Data1>*>(nullptr)); 

or by explicitly specializing the function call operator.

https://devblogs.microsoft.com/oldnewthing/20230605-00/?p=108289


2/3

Data1 data1 = storageLoader.operator()<Data1>(nullptr); 

Neither of these is very attractive, and they certainly defeat any conciseness benefit of an
overloaded operator.

I personally am a fan of giving named function equivalents to overloaded operators,
particularly if they are templated. In this case, I would have done something like

struct StorageLoader 
{ 
   template<typename DataType> 
   DataType Load(StorageOptions<DataType> const* options); 

   template<typename DataType> 
   DataType operator()(StorageOptions<DataType> const* options) 
   { return Load(options); } 
};

The function call operator is just a convenient shorthand for calling the Load method.

// Using function call operator 
data1 = storageLoader(&data1Options); 

// Using named method 
data1 = storageLoader.Load(&data1Options); 

// Named method works better for nullptr 
data1 = storageLoader.Load<Data1>(nullptr); 

And then I can make the parameter to Load default to nullptr:

struct StorageLoader 
{ 
   template<typename DataType> 
   DataType Load(StorageOptions<DataType> const* options 
                 = nullptr); 

   ... 
};

which allows you to write

// If no parameters, then use default options 
data1 = storageLoader.Load<Data1>(); 

Sometimes, the meaning of an overloaded operator is unclear, in which case having an
explicit name also helps avoid confusion over what it does. (I’m looking at you, overloaded
address-of operator.)

https://devblogs.microsoft.com/oldnewthing/20221010-00/?p=107269


3/3

Also, giving a name to the overloaded operator makes generating a pointer-to-method a little
less awkward.

 
 


