
1/2

June 19, 2023

Why am I being told about a signed/unsigned
comparison, and why only sometimes, and how can I fix
it?

devblogs.microsoft.com/oldnewthing/20230619-00

Raymond Chen

A customer was using the Windows Test Authoring and Execution Framework (TAEF), and
they found that this line of code compiled successfully most of the time:

std::vector<int> values = CalculateValues();

VERIFY_ARE_EQUAL(values.size(), 0);

// warning C4389: '==': signed/unsigned mismatch

The VERIFY_ARE_EQUAL macro compares its two parameters and reports a test failure if they
are not equal. The customer found that the above code compiled okay for x86-64, but
produced the indicated error when compiled for x86-32. What’s going on?

The VERIFY_ARE_EQUAL macro passes its parameters onward to a helper function, which in
turn passes the parameters to another helper function, which in turn passes the parameters
to yet another helper function, which looks like this:

template<typename T1, typename T2>

static bool AreEqual(const T1& expected, const T2& actual)

{

 // != 0 to handle overloads of operator==

 // that return BOOL instead of bool

 return (expected == actual) != 0;

}

The types of the parameters are deduced as std::vector<int>::size_type and int. The
first parameter is a std::vector<int>::size_type, because that’s what the vector::
size() method returns. The second parameter is a int because that’s what 0 is.

Therefore, the compiler warning of an unsigned/signed comparison is valid. You are
comparing an unsigned value (the size of the vector) against a signed value (the integer
zero). The warning is present because the rules for an unsigned/signed comparison is to
convert the signed value to unsigned, and then compare the two unsigned values. This is
different from the mathematical result.

https://devblogs.microsoft.com/oldnewthing/20230619-00/?p=108355
https://learn.microsoft.com/en-us/windows-hardware/drivers/taef/
https://learn.microsoft.com/en-us/windows-hardware/drivers/taef/verify

2/2

unsigned int v1 = 4294967295;

int v2 = -1;

if (v1 == v2) { /* true */ }

if (v1 > v2) { /* false */ }

Both results disagree with the mathematical expectations. 4294967295 ≠ −1, so
mathematically, the first test should fail. And 4294967295 > −1, so mathematically, the
second test should succeed. What’s happening is that the value −1 is converted from a
signed integer to unsigned, and that means that it becomes 4294967295. (The rule for
signed-to-unsigned conversion is that negative numbers become the positive equivalent
modulo 1 << bit_size.)

You and I can see that this discrepancy doesn’t apply here because the signed integer being
compared against is the literal value zero, which is not negative.

What’s happening is that the back-end applies different degrees of inlining based on
optimization levels and the target architecture. Higher optimization levels will consider higher
degrees of inlining, and some architectures may be more conducive to inlining than others,
depending on things like register pressure, the complexity of the calling convention, or other
factors.

If the back-end ends up doing enough inlining that the constant 0 gets inlined into the ==
operator, then the compiler realizes, “Oh, I would normally complain about a signed/unsigned
mismatch, but I can see that the value 0 is not negative, so I will suppress the warning
because it doesn’t apply to this case.” On the other hand, if the back-end doesn’t inline
aggressively enough, it won’t propagate the constant deep enough to realize that it’s never
negative, and you get the warning.

The customer offered this solution but complained that it was quite unwieldy:

VERIFY_ARE_EQUAL(values.size(), (std::vector<int>::size_type)0);

That will work, but so too will casting to any other unsigned type, because the compiler is not
insisting that the second parameter’s type match the first parameter’s type exactly. It just
wants them to agree on signedness. You could pass a size_t or even a uint8_t; as long as
it’s unsigned. And probably the most convenient way to indicate an unsigned zero is to
append a U to the literal.

VERIFY_ARE_EQUAL(values.size(), 0U);

