
1/3

June 26, 2023

How to wait for multiple C++ coroutines to complete
before propagating failure, initial plunge

devblogs.microsoft.com/oldnewthing/20230626-00

Raymond Chen

I’ll start by repeating a very handy cheat sheet from a debugging case study of memory
corruption from a coroutine that already finished.

Language Method Result If any fail

C++ Concurrency::when_all vector<T> fail immediately

C++ winrt::when_all void fail immediately

C# Task.WhenAll T[] wait for others

JavaScript Promise.all Array fail immediately

JavaScript Promise.allSettled Array wait for others

Python asyncio.gather List fail immediately by default

Rust join! tuple wait for others

Rust try_join! tuple fail immediately

Python’s asynchio.gather lets you choose whether a failed coroutine causes gather to fail
immediately or to wait for others before failing. The default is to fail immediately.

The problem we saw was that the C++/WinRT when_all fails immediately, but the code
wanted it to wait for the others before failing. This is a potentially useful general pattern, so
let’s try to write our own when_all_completed function.

It’ll take a few tries to get there.

The idea behind the function is simple. Here’s the pseudocode:

https://devblogs.microsoft.com/oldnewthing/20230626-00/?p=108373
https://devblogs.microsoft.com/oldnewthing/20221014-00/?p=107287

2/3

template<typename... T>
IAsyncAction when_all_complete(T... asyncs)
{
 std::exception_ptr eptr;

 /* Repeat for each element "async" of asyncs... */
 try {
 co_await async;
 } catch (...) {
 if (!eptr) {
 eptr = std::current_exception();
 }
 }
 ...

 if (eptr) std::rethrow_exception(eptr);
}

The idea is that we co_await each of the passed-in coroutines, but do so inside a try/catch
block. If an exception occurs, then we save it, assuming we don’t have an exception already:
The first exception thrown is the one that is reported. (Naturally, you can remove the if
(!eptr) if you want to report the last exception thrown.)

The “repeat for…” part can be solved with expansion statements:

template<typename... T>
IAsyncAction when_all_complete(T... asyncs)
{
 std::exception_ptr eptr;

 for... (auto& async : async) {
 try {
 co_await async;
 } catch (...) {
 if (!eptr) {
 eptr = std::current_exception();
 }
 }
 }

 if (eptr) std::rethrow_exception(eptr);
}

But before we clap the dust off our hands, note that expansion statements failed to be
completed in time for C++20 and were postponed to C++23. And even if it were available in
C++20, it will take time for projects to migrate off of C++17, so we’ll have to find a solution
that at least works on C++17.

We’ll start our explorations next time.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1306r1.pdf

3/3

Warning: There will be a lot of failure. If you’re looking for an answer to be handed to you,
you’ll have to skip ahead to the end of the series, whenever that ends up happening.

Bonus chatter: Also, there’s a frustrating edge case in the above code, but I don’t want to
try to fix it yet.

