
1/3

July 3, 2023

How to wait for multiple C++ coroutines to complete
before propagating failure, symmetric transfer

devblogs.microsoft.com/oldnewthing/20230703-00

Raymond Chen

Last time, we wrote a simple coroutine promise to help us with our when_all_completed
function. One obvious refinement we can make is to avoid stack build-up by using symmetric
transfer.

Observe that in both of the await_suspend flows, we resume another coroutine. In our initial
implementation, we accomplished this by calling the resume() method on the desired
coroutine handle. However, this results in stack build-up: The caller awaits the coroutine by
calling resume() on the coroutine, and when the coroutine finishes, it returns control to the
caller by calling resume() on the caller’s coroutine handle. So we’re two frames deep.

This cycle repeats for each awaitable passed to the when_all_completed function, and there
could be quite a few of them.

We can use symmetric transfer to avoid the stack build-up, since the last thing each function
does is resume some other coroutine.

First, we’ll use symmetric transfer when starting the coroutine:

struct all_completed_result
{
 all_completed_promise& promise;
 bool await_ready() noexcept { return false; }
 auto await_suspend(
 std::coroutine_handle<> handle) noexcept;
 std::exception_ptr await_resume() noexcept;
};

auto all_completed_result::
 await_suspend(std::coroutine_handle<> handle)
 noexcept
{
 promise.awaiting_coroutine = handle;
 return promise.coroutine();
}

https://devblogs.microsoft.com/oldnewthing/20230703-00/?p=108387
https://devblogs.microsoft.com/oldnewthing/20230630-00/?p=108382

2/3

When lazy-starting the coroutine, we return the coroutine’s handle instead of manually
resuming it. This activates symmetric transfer, so the compiler can use a tail call to jump
directly to the coroutine, avoiding a stack frame.

Doing the same thing when the coroutine finishes takes a little more work because the
symmetric transfer happens in await_suspend, but our original version was resuming the
caller in final_suspend. We’ll have to arrange for the caller’s handle to be returned from
await_suspend.

struct all_completed_promise
{
 ...

 auto final_suspend() noexcept {
 struct awaiter : std::suspend_always
 {
 std::coroutine_handle<> other;
 auto await_suspend(std::coroutine_handle<>) {
 return other;
 }
 };
 return awaiter{{}, awaiting_coroutine};
 }
};

This is the actual symmetric transfer part: We save the coroutine handle we want to resume
in the awaiter, so that the awaiter can return it from await_suspend. Again, symmetric
transfer allows the resumption of the awaiting coroutine to happen as a tail call, avoiding a
stack frame.

But we’re not done yet.

We suspended the promise’s coroutine, so it remains allocated in memory. We need to
destroy it after we extract the eptr in the await_resume that returns it to the caller.

std::exception_ptr all_completed_result::
 await_resume() noexcept
{
 auto eptr = promise.eptr;
 promise.coroutine().destroy();
 return eptr;
}

Okay, so that reduces the likelihood of stack exhaustion issues when awaiting a whole bunch
of awaitables inside when_all_completed.

3/3

But wait, we haven’t addressed the std::bad_alloc problem that we identified a while back.
We got distracted with all the simplifications that a custom promise offered, but forgot why
why we wrote our own custom promise in the first place. Let’s return to that next time.

