
1/4

August 8, 2023

Inside STL: The unordered_map, unordered_set,
unordered_multimap, and unordered_multiset

devblogs.microsoft.com/oldnewthing/20230808-00

Raymond Chen

The C++ standard library provides hash-based associative containers unordered_map,
unordered_set, unordered_multimap, and unordered_multiset.

All of these collections are hash tables with different payloads. The unordered_map and the
unordered_multimap use a std::pair<Key, Value> as the payload, whereas the the
unordered_set and the unordered_multiset use a Key as the payload.

Conceptually, the hash table consists of a bunch of buckets, and each bucket contains a
linked list of the nodes that fall into that bucket. (This design is known as open hashing or
separate chaining.) However, that’s not how the information is structured internally, because
iterating through a traditionally-structured hash table requires more state than a single
pointer: When you reach the end of each hash chain, you need some other information to tell
you which chain to enumerate next.

C++ standard library implementations instead structure the hash table like this:

struct hashtable
{
 using hint = std::list<payload>::iterator;

 std::list<payload> list;
 std::vector<hint> buckets;
};

The list is a linked list of payloads, sorted by bucket. The buckets is a vector of iterators
(pointers) into the list that tells you where each bucket begins. Each bucket implicitly ends
when the next bucket begins, or (for the last bucket) when the end of the list is reached.

For example, suppose we have a hash table with four buckets, using the identity function as
the hash function, and using “mod 4” as the bucket mapping function. Suppose that this hash
table contains the values 2, 5, 6, 7. A traditional version of that hash table would look like a
vector of lists:

https://devblogs.microsoft.com/oldnewthing/20230808-00/?p=108572

2/4

 buckets

0

1 • → 5

2 • → 2 → 6

3 • → 7

However, in reality, the hash table looks like this:

5 → 2 → 6 → 7

↑ ↑ ↑

[0]
 [1]

 [2] [3]

In this diagram, we see that

Bucket 0 consists of all the elements until we reach the start of bucket 1. But the start
of bucket 1 is the same as the start of bucket 0, so bucket 0 is empty.
Bucket 1 consists of all the elements until we reach the start of bucket 2, so that’s just
5.
Bucket 2 consists of all the elements until we reach the start of bucket 3, so that’s 2
and 6.
Bucket 3 consists of all the elements until we reach the end of the list, so that’s 7.

Another way of looking at this is that all of the bucket linked lists have been concatenated
into a single linked list, and the buckets vector tells you how to break the giant list into
individual bucket lists.

Internally, the standard library implementations often use bespoke versions of list and
vector instead of the public ones. Furthermore, gcc and clang use a singly-linked list instead
of the doubly-linked std::list I used here for expository purposes. The hash table-based
collections do not support reverse iteration, so a forward list is sufficient.

When you’re debugging, you’re not really interested in the buckets. You just want to see
what’s in the hash table. To do that, dump the list. The Visual Studio debugger has a nice
visualizer for these collections, but here’s how you dig in. (Again, the hash object, the
equality object, and the allocator are typically empty classes, so they are often stored as
compressed pairs with other stuff.)

https://slate.com/culture/2011/11/bucket-list-what-s-the-origin-of-the-term.html

3/4

0:000> ?? s
class std::unordered_set<int,std::hash<int>,std::equal_to<int>,std::allocator<int> >
 +0x000 _Traitsobj :
std::_Uset_traits<int,std::_Uhash_compare<int,std::hash<int>,std::equal_to<int>
>,std::allocator<int>,0>
 +0x008 _List : std::list<int,std::allocator<int> >
 +0x018 _Vec :
std::_Hash_vec<std::allocator<std::_List_unchecked_const_iterator<std::_List_val<std::
>,std::_Iterator_base0> > >
 +0x030 _Mask : 7
 +0x038 _Maxidx : 8
0:000> ?? s._List
class std::list<int,std::allocator<int> >
 +0x000 _Mypair :
std::_Compressed_pair<std::allocator<std::_List_node<int,void *>
>,std::_List_val<std::_List_simple_types<int> >,1>
0:000> ?? s._List._Mypair
class std::_Compressed_pair<std::allocator<std::_List_node<int,void *>
>,std::_List_val<std::_List_simple_types<int> >,1>
 +0x000 _Myval2 : std::_List_val<std::_List_simple_types<int> >
0:000> ?? s._List._Mypair._Myval2
class std::_List_val<std::_List_simple_types<int> >
 +0x000 _Myhead : 0x000001b8`ad8a9280 std::_List_node<int,void *>
 +0x008 _Mysize : 4

Okay, we finally dug into the _List to the point where we found the list head. Now we can
use the usual list dumping commands to inspect the linked list.

0:000> dl 0x000001b8`ad8a9280
000001b8`ad8a9280 000001b8`ad8a9640 000001b8`ad8a84c0
000001b8`ad8a9290 baadf00d`baadf00d abababab`abababab ← garbage sentinel node
000001b8`ad8a9640 000001b8`ad8a92d0 000001b8`ad8a9280
000001b8`ad8a9650 baadf00d`00000002 abababab`abababab ← 2
000001b8`ad8a92d0 000001b8`ad8a8470 000001b8`ad8a9640
000001b8`ad8a92e0 baadf00d`00000003 abababab`abababab ← 3
000001b8`ad8a8470 000001b8`ad8a84c0 000001b8`ad8a92d0
000001b8`ad8a8480 baadf00d`00000005 abababab`abababab ← 5
000001b8`ad8a84c0 000001b8`ad8a9280 000001b8`ad8a8470
000001b8`ad8a84d0 baadf00d`00000007 abababab`abababab ← 7

The Windows debugger just dumps all the nodes right next to each other, so it’s hard to see
the boundaries between them. Here’s what it looks like after I’ve added some spaces and
annotations:

4/4

0:000> dl 0x000001b8`ad8a9280
000001b8`ad8a9280 000001b8`ad8a9640 000001b8`ad8a84c0
000001b8`ad8a9290 baadf00d`baadf00d abababab`abababab ← garbage sentinel node
 ^garbage

000001b8`ad8a9640 000001b8`ad8a92d0 000001b8`ad8a9280
000001b8`ad8a9650 baadf00d`00000002 abababab`abababab ← 2
 ^value

000001b8`ad8a92d0 000001b8`ad8a8470 000001b8`ad8a9640
000001b8`ad8a92e0 baadf00d`00000003 abababab`abababab ← 3
 ^value

000001b8`ad8a8470 000001b8`ad8a84c0 000001b8`ad8a92d0
000001b8`ad8a8480 baadf00d`00000005 abababab`abababab ← 5
 ^value

000001b8`ad8a84c0 000001b8`ad8a9280 000001b8`ad8a8470
000001b8`ad8a84d0 baadf00d`00000007 abababab`abababab ← 7
 ^value

All of the techniques we used when debugging lists work here too, so I won’t repeat them.

