
1/2

August 23, 2023

On writing loops in PPL and continuation-passing style,
part 2

devblogs.microsoft.com/oldnewthing/20230823-00

Raymond Chen

Last time, we came up with task-based while loop that involved creating a custom callable
that passed copies of itself to the next iteration.

This time, we’ll implement the function in terms of a more traditional recursion.

template<typename Callable>
task<void> do_while_task(
 std::shared_ptr<Callable> const& f)
{
 return (*f)().then([f](bool loop) {
 return loop ? do_while_task(f) :
 task_from_result();
 });
}

template<typename Callable, typename =
 std::enable_if_t<std::is_invocable_v<Callable>>>
task<void> do_while_task(Callable&& callable)
{
 using Decayed = std::decay_t<Callable>;
 return do_while_task(
 std::make_shared<Decayed>(
 std::forward<Callable>(callable)));
}

The real work happens in the first overload, which takes a ready-made shared_ptr. The
second overload is a convenience method that lets you pass a callable, and it will wrap it in a
shared_ptr for you.

However, if you think about it, in PPL-style programming, the lambda callable itself usually
holds a pointer to shared state, so that the various task fragments can share information with
each other. Let’s look again at my original example.

https://devblogs.microsoft.com/oldnewthing/20230823-00/?p=108640
https://devblogs.microsoft.com/oldnewthing/20230822-00/?p=108634

2/2

do_while_task([i = 0, widgets]() mutable
{
 if (i >= 3) return task_from_result(false);
 return create_widget().then([index = i++, widgets](auto widget)
 {
 widgets[index] = widget;
 return true;
 });
}).then([] {
 printf("Done!\n");
});

I cheated here and incremented the i variable inside the first lambda, but capturing the
unincremented value as index for the second lambda. More realistically, the two lambdas
need to share state.

struct lambda_state
{
 lambda_state(Widgets* w) : widgets(w) {}
 Widgets* widgets;
 int i = 0;
};

auto state = std::make_shared<lambda_state>(widgets);

do_while_task([state]()
{
 if (state->i >= 3) return task_from_result(false);
 return create_widget().then([state](auto widget)
 {
 state->widgets[state->i] = widget;
 state->i++;
 return true;
 }
}).then([] {
 printf("Done!\n");
});

This means that our do_while_task creates a shared_ptr that itself holds another
shared_ptr, which seems kind of silly.

We’ll address this next time.

