
1/2

August 25, 2023

On writing loops in continuation-passing style, part 4
devblogs.microsoft.com/oldnewthing/20230825-00

Raymond Chen

So far, we’ve been look at writing loops in PPL and continuation-passing style, and a lot of
the complications came from creating shared_ptrs to manage shared state without copying,
and trying to reduce the number of such pointers we had to make. The equivalent helper
functions in C# and JavaScript are simpler because in those languages, references act like
shared_ptr already; there’s no need to convert them into shared pointers explicitly.

class TaskHelpers
{
 public static Task DoWhileTask(Func<Task<bool>> callable)
 {
 return callable().ContinueWith(t =>
 t.Result ? DoWhileTask(callable)
 : Task.CompletedTask).Unwrap();
 }
}

The C# Task Parallel Library’s ContinueWith method is the equivalent to the PPL then()
method: You give it a Func<Task<T>, Result> which is called with the preceding task. In our
case, we are given a Task<bool>: We check the result, and if it is true, then we recurse
back and do the whole thing again.

The gotcha is that ContinueWith returns a task whose result type matches the return value
of the Func you passed in. In our case, that Func returns a Task, so the return value of
ContinueWith is a rather confusing Task<Task>. You need to follow up with the Unwrap()
method to unwrap one layer and get a Task back. (More generally, the Unwrap method
converts a Task<Task<T>> to a Task<T>.)

The JavaScript version is comparable.

function do_while_task(callable) {
 return callable().then(loop =>
 loop ? do_while_task(callable) : undefined);
}

https://devblogs.microsoft.com/oldnewthing/20230825-00/?p=108652
https://devblogs.microsoft.com/oldnewthing/20230824-00/?p=108647

2/2

We take advantage of the JavaScript convenience that the continuation function can return
either a Promise or a value, so instead of returning a settled Promise, we just return
undefined and let that be the result of the promise chain.

We can code golf it a little more by using the && operator:

function do_while_task(callable) {
 return callable().then(loop =>
 loop && do_while_task(callable));
}

In time, C++, C#, and JavaScript all gained some variation of the await keyword, and it’s
probably easier to use that keyword if you can.

// C++/PPL
task<void> create_many_widgets(Widget* widgets, int count)
{
 for (int i = 0; i < count; i++) {
 widgets[0] = co_await create_widget();
 }
}

// C#
async Task CreateManyWidgets(Widget[] widgets)
{
 for (int i = 0; i < widgets.Count; i++) {
 widgets[i] = await CreateWidget();
 }
}

// JavaScript
async function createManyWidgets(widgets) {
 for (var i = 0; i < widgets.length; i++) {
 widgets[i] = await createWidget();
 }
}

