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Some time ago, I discussed why HANDLE return values are so inconsistent, and I traced it all
the way back to the 16-bit _lopen and _lcreat functions, which returned -1 on failure.

But why do those functions return -1 on failure instead of zero?

The _lopen and _lcreat functions were Windows versions of the C runtime _open and
_creat functions. The C runtime functions came in four different versions depending on
which MS-DOS memory model you were using, and the convention was that when Windows
adopted a C runtime function, it used the “large” version with the L prefix, since that is the
most general version.

Okay, so why did _open and _creat return -1 on failure?

Because they were MS-DOS-compatible versions of the Unix functions open and creat.
They even preserve the dropped silent “e” at the end of creat.

Okay, so why do those functions return -1 on failure?

On Unix, the return value is an integer that represents a file descriptor, valid file descriptors
are integers starting with zero. Every process comes with three predefined file descriptors:

Descriptor Meaning

0 stdin (standard input)

1 stdout (standard output)

2 stderr (standard error)

Files opened by the program begin with file descriptor 3.

The value -1 is used to represent failure because 0 was already taken.
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And that value of -1 carried forward, through a chain of backward compatibility, to Win32 as
the numeric value of INVALID_HANDLE_VALUE. We saw a little while ago one of the
consequences.
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