
1/2

September 19, 2023

Why did the 16-bit _lopen and _lcreat function return -1
on failure instead of 0?

devblogs.microsoft.com/oldnewthing/20230919-00

Raymond Chen

Some time ago, I discussed why HANDLE return values are so inconsistent, and I traced it all
the way back to the 16-bit _lopen and _lcreat functions, which returned -1 on failure.

But why do those functions return -1 on failure instead of zero?

The _lopen and _lcreat functions were Windows versions of the C runtime _open and
_creat functions. The C runtime functions came in four different versions depending on
which MS-DOS memory model you were using, and the convention was that when Windows
adopted a C runtime function, it used the “large” version with the L prefix, since that is the
most general version.

Okay, so why did _open and _creat return -1 on failure?

Because they were MS-DOS-compatible versions of the Unix functions open and creat.
They even preserve the dropped silent “e” at the end of creat.

Okay, so why do those functions return -1 on failure?

On Unix, the return value is an integer that represents a file descriptor, valid file descriptors
are integers starting with zero. Every process comes with three predefined file descriptors:

Descriptor Meaning

0 stdin (standard input)

1 stdout (standard output)

2 stderr (standard error)

Files opened by the program begin with file descriptor 3.

The value -1 is used to represent failure because 0 was already taken.

https://devblogs.microsoft.com/oldnewthing/20230919-00/?p=108792
https://devblogs.microsoft.com/oldnewthing/20040302-00/?p=40443
https://devblogs.microsoft.com/oldnewthing/20200728-00/?p=104012
https://www.man7.org/linux/man-pages/man2/open.2.html


2/2

And that value of -1 carried forward, through a chain of backward compatibility, to Win32 as
the numeric value of INVALID_HANDLE_VALUE. We saw a little while ago one of the
consequences.

 
 

https://devblogs.microsoft.com/oldnewthing/20230914-00/?p=108766

