
1/2

November 6, 2023

Why doesn’t reduction by modulo work for floating point
values?

devblogs.microsoft.com/oldnewthing/20231106-00

Raymond Chen

It is commonly known that if you want to perform a calculation modulo an integer, you can
apply the modulo operation at each step of the calculation, instead of carrying a huge value
and then reducing it at the end.

uint32_t MultiplyMod10(uint32_t a, uint32_t b)
{
 // Naïve version: Overflow danger
 return (a * b) % 10;

 // Reduce modulo 10 after each step.
 return ((a % 10) * (b % 10)) % 10;
}

But this trick doesn’t work for floating point values.

constexpr double TwoPi = 6.2831853071795864769252867665590058L;

double MultiplyModulo2Pi(double a, double b)
{
 // Naïve version gives correct answer
 return fmod(a * b, TwoPi);

 // But this gives the wrong answer
 return fmod(fmod(a, TwoPi) * fmod(b, TwoPi), TwoPi);
}

For example, trying to calculate 7.5 × 10 mod 2π using the naïve formula gives the correct
value of 75 mod 2π ≈ 5.8850. But using the alternate formula gives the incorrect value of
(1.2168 × 3.7168) mod 2π ≈ 4.5227.

A simpler demonstration of this problem is calculating (½ × 2) mod 2. The naïve version
gives you the correct 1 mod 2 = 1. The flawed incorrect version gives you (½ mod 2) (2 mod
2) mod 2 = (½ × 0) mod 2 = 0 mod 2 = 0.

What’s going on? Is math broken?

https://devblogs.microsoft.com/oldnewthing/20231106-00/?p=108971

2/2

Math is not broken. Your expectations are broken.

Let’s see why the integer modulo technique works.

a mod n = c means that a = c + kn for some integer k.

Therefore

(a mod n) (b mod n) =
 (c₁ + k₁n) (c₂ + k₂n) =

 c₁c₂ + c₁k₂n + c₂k₁n + k₁k₂n² =
 c₁c₂ + (c₁k₂ + c₂k₁ + k₁k₂n)n =
 c₁c₂ + k₃n, where k₃ = c₁k₂ + c₂k₁ + k₁k₂n.

If a, b, and n are all integers, then so too will be c₁k₂ + c₂k₁ + k₁k₂n, and the final expression
shows that then (a mod n) (b mod n) mod n = ab mod n.

But if a, b, and n are not all integers, then that expression for k₃ might not end up being an
integer, and then the conclusion breaks down.

In other words, taking the modulus after each operation works with integers because the trick
relies on the fact that adding and multiplying integers produces another integer. Once you
throw floating point values into the formula, the end result is not guaranteed to be an integer
any more.

Bonus chatter: Mathematically, the modulus operation is a ring homomorphism from the ring
of integers to the ring of integers modulo n. Ring operations are addition, subtraction, and
multiplication. Note that the trick doesn’t work with division: (2 ÷ 2) mod 2 = 1 mod 2 = 1, but
((2 mod 2) ÷ (2 mod 2)) mod 2 = (0 ÷ 0) mod 2 = nonsense.

