
1/3

November 20, 2023

If you’re going to crash on an unhandled exception, you
may as well do it sooner rather than later

devblogs.microsoft.com/oldnewthing/20231120-00

Raymond Chen

Some time ago, we looked at the case of the invalid argument exception from a method that
takes no arguments, and the investigation took us through a stowed exception, and then
back out the other side. That was a lot of work to dig out the root cause. Can we avoid this
problem in the future?

Recall that the problem originated in this lambda:

m_closingRevoker = flyout.Closing(winrt::auto_revoke,
 [](auto&& sender, auto&&) {
 if (auto flyout = sender.try_as<xaml::CommandBarFlyout>()) {
 auto popups =
xaml::VisualTreeHelper::GetOpenPopupsForXamlRoot(flyout.XamlRoot());
 ⟦…⟧
 }
});

The call to Get Open Popups For Xaml Root threw an invalid argument exception, which then
escaped the lambda and was propagated all the way back to an unrelated function call.

void MyPanel::CancelCurrentFlyout()
{
 ⟦…⟧

 m_menu.Hide();

 ⟦…⟧
}

This exception then propagated up the call stack to the caller of My Panel::Cancel Current ‐
Flyout, which is My Panel::Is Ready For New Context Menu, and then propagated further to My ‐
Panel::Do Context Menu, and that’s where the process finally terminated, because My Panel::
Do Context Menu was marked as noexcept.

https://devblogs.microsoft.com/oldnewthing/20231120-00/?p=109037
https://devblogs.microsoft.com/oldnewthing/20231110-00/?p=108991

2/3

void ContextMenuPresenter::DoContextMenu() noexcept
{
 ⟦…⟧
}

The noexcept specifier means that any attempt to propagate an exception out of the function
will result in std::terminate.

The problem here is that the source of the exception was so far away from the place the
exception was detected, and we had to do a lot of detective work to trace the exception back
to its origin.

We could have avoided all this hassle if we had marked the event handler as noexcept:

m_closingRevoker = flyout.Closing(winrt::auto_revoke,
 [](auto&& sender, auto&&) noexcept {
 if (auto flyout = sender.try_as<xaml::CommandBarFlyout>()) {
 auto popups =
xaml::VisualTreeHelper::GetOpenPopupsForXamlRoot(flyout.XamlRoot());
 ⟦…⟧
 }
});

With the noexcept specifier on the lambda, an exception from Get Open Popups For Xaml Root
would have terminated the process once it tried to propagate out of the lambda, before
XAML could catch it. That would have given us a crash stack trace that directly pinpointed
the problem.

We learned this lesson some time ago: If there is no difference between two options, choose
the one that is easier to debug.

In general, you probably don’t want your event handlers to allow exceptions to propagate. If
something goes wrong in the event handler, you’re either going to deal with it right away or
never at all. And if you’re never going to deal with it at all, you may as well fail immediately
so the problem is easier to diagnose in a post-mortem.

Bonus chatter: Another reason to mark your event handler as noexcept is to avoid
accidentally making a secret signal.

m_closingRevoker = flyout.Closing(winrt::auto_revoke,
 [weak = get_weak()](auto&& sender, auto&&) {
 if (auto strongThis = weak.get()) {
 strongThis->m_widget.Stop();
 if (strongThis->m_buddy) {
 strongThis->m_buddy.NotifyStopped();
 }
 }
 }
});

https://devblogs.microsoft.com/oldnewthing/20170725-00/?p=96676
https://devblogs.microsoft.com/oldnewthing/20190521-00/?p=102505

3/3

If m_buddy is a reference to an out-of-process object that has crashed, the Notify Stopped
will fail with something like RPC_E_SERVER_DIED, which will propagate out of the lambda and
be interpreted as the secret signal for “The object no longer exists. Stop calling the event
handler.” Your event handler is “helpfully” unregistered, and a few weeks later, you end up
studying bugs where the widgets are still running even though the flyout is closed. If you’re
lucky, you trace it back to this “server died” exception that propagated out of the lambda by
mistake.

Putting a noexcept on the lambda forces the process to terminate if an exception occurs,
which means that if the buddy crashes, your process will crash the next time it tries to access
the buddy. And if that’s not what you want, you can catch the exception and apply domain-
specific recovery.

m_closingRevoker = flyout.Closing(winrt::auto_revoke,
 [weak = get_weak()](auto&& sender, auto&&) noexcept {
 if (auto strongThis = weak.get()) {
 strongThis->m_widget.Stop();
 if (strongThis->m_buddy) {
 try {
 strongThis->m_buddy.NotifyStopped();
 } catch (...) {
 // Throw away the broken buddy.
 strongThis->m_buddy = nullptr;
 }
 }
 }
 }
});

