Why does the Windows Portable Executable (PE) format
have separate tables for import names and import
addresses?, part 1

=. devblogs.microsoft.com/oldnewthing/20231129-00

November 29, 2023

Raymond Chen

In the Windows Portable Executable (PE) format, the image import descriptor table describes
the functions imported from a specific target DLL.

struct IMAGE_IMPORT_DESCRIPTOR {
DWORD OriginalFirstThunk;
DWORD TimeDateStamp;
DWORD ForwarderChain;
DWORD Name;
DWORD FirstThunk;

}

The originalFirstThunk points to an array of pointer-sized IMAGE_THUNK_DATA structures
which describe the functions being imported. The FirstThunk points to an array of pointers,
whose initial values are a copy of the values pointed to by 0riginalFirstThunk. When the
DLL is loaded, those initial values in the FirstThunk table are replaced by the actual function
pointers determined at runtime.

But why are there two copies of the table? The two tables are never needed at the same
time, so why not reuse the memory? When the DLL is initially loaded, the entries describe
the functions being imported, and after the function addresses are located, they could be
written back into the same table.

The answer is DLL binding.

As a load-time optimization, you can bind your DLL to its targets. If the target DLL has
0x20304000 as its preferred base address, then if the DLL gets loaded at that preferred base
address, you know what all the function addresses are going to be, and binding records
those precalculated function addresses into the FirstThunk table. After binding is performed,
the FirstThunk table now holds the precalculated function addresses and is not a copy of
the OriginalFirstThunk table. The module timestamp of the DLL that was used to calculate
the bindings is recorded in the image import directory."

1/2


https://devblogs.microsoft.com/oldnewthing/20231129-00/?p=109077
https://devblogs.microsoft.com/oldnewthing/20100318-00/?p=14563

When the DLL is loaded, the loader checks whether the module timestamp recorded in the
image import descriptor matches the timestamp of the actual module found at runtime. If so,
then it just uses the precalculated values in the FirstThunk table. And if not, then the loader
uses the originalFirstThunk table to look up the functions at runtime.

Therefore, you can’t combine the OriginalFirstThunk and FirstThunk tables: If the
precalculated values in the FirstThunk table cannot be used, you need to go back to the
original values in OriginalFirstThunk to resolve the imports the old-fashioned way.

Bonus chatter: Binding is of relatively little value nowadays due to address space layout
randomization.

' And the module timestamp is often not really a timestamp.

2/2


https://devblogs.microsoft.com/oldnewthing/20170120-00/?p=95225
https://devblogs.microsoft.com/oldnewthing/20180103-00/?p=97705

