
1/31/24, 5:00 PM How do I prevent my ATL class from participating in COM aggregation? DECLARE_NOT_AGGREGATABLE didn't work - The Old …

https://devblogs.microsoft.com/oldnewthing/20240101-00/ 1/3

January 1, 2024

How do I prevent my ATL class from participating in COM
aggregation? DECLARE_NOT_AGGREGATABLE didn’t
work

devblogs.microsoft.com/oldnewthing/20240101-00

Raymond Chen

Consider the following ATL class declaration:

class Widget :
 public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<Widget>,
 public IAgileObject
{
public :
 DECLARE_NOT_AGGREGATABLE(Widget)

 BEGIN_COM_MAP(Widget)
 COM_INTERFACE_ENTRY(IAgileObject)
 END_COM_MAP()

 ⟦ ... ⟧
};

This class says that it is not aggregatable.

Hold my beer.

HRESULT CreateAggregatedWidget(
 IUnknown* punkOuter, REFIID riid, void** ppv)
{
 return
 CComCreator<CComAggObject<Widget>>::
 CreateInstance(punkOuter, riid, pppv);
}

There, I aggregated your allegedly non-aggregatable object.

The DECLARE_NOT_AGGREGATABLE macro is an instruction to the class factory to disallow
aggregation, but if you create the object by means other than the class factory, then the
macro has no effect. Creating the object without using the class factory is common for
objects created internally.

https://devblogs.microsoft.com/oldnewthing/20240101-00/?p=109214

1/31/24, 5:00 PM How do I prevent my ATL class from participating in COM aggregation? DECLARE_NOT_AGGREGATABLE didn't work - The Old …

https://devblogs.microsoft.com/oldnewthing/20240101-00/ 2/3

So how do you mark your class so that any attempt to aggregate the object encounters a
compiler error?

I found a sneaky trick.

The CComAggObject template sets up aggregation by creating the inner object and overriding
its IUnknown methods to forward to the controlling unknown, kept in the member variable
m_pOuterUnknown. The connection is made here:

template <class Base>
class CComContainedObject :
 public Base
{
public:
 typedef Base _BaseBlass;

 CComContainedObject(void* pv)
 {
 this->m_pOuterUnknown = (IUnknown*)pv;
 }

If we can make this line of code produce an error, then we can prevent people from
instantiating CComContainedObject<Widget> and thereby prevent them from putting it in a
CComAggObject.

I had multiple ideas for how to accomplish this, but the simplest was this:

class Widget :
 public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<Widget>,
 public IAgileObject
{
public :
 DECLARE_NOT_AGGREGATABLE(Widget)

 static constexpr void* m_pOuterUnknown = nullptr;

 BEGIN_COM_MAP(Widget)
 COM_INTERFACE_ENTRY(IAgileObject)
 END_COM_MAP()

 ⟦ ... ⟧
};

This shadows the m_pOuterUnknown member from CComObjectRootEx, so when
CComContainedObject tries to do a this->m_pOuterUnknown, it gets the Widget one. And since
the Widget one is marked constexpr, it cannot be modified.

error C3892: 'm_pOuterUnknown': you cannot assign to a variable that is const

https://learn.microsoft.com/en-us/cpp/atl/reference/ccomobjectrootex-class?view=msvc-170#m_pouterunknown
https://learn.microsoft.com/en-us/cpp/atl/reference/ccomobjectrootex-class?view=msvc-170#m_pouterunknown

1/31/24, 5:00 PM How do I prevent my ATL class from participating in COM aggregation? DECLARE_NOT_AGGREGATABLE didn't work - The Old …

https://devblogs.microsoft.com/oldnewthing/20240101-00/ 3/3

If you are compiling with a version of C++ that doesn’t support constexpr (which is not
entirely out of the question given that you’re using ATL, and ATL was written in 1996, over a
decade before constexpr was a twinkle in Gabriel and Bjarne’s eyes), you can use this
alternate shadowing definition:

 static void m_pOuterUnknown() {}

This makes m_pOuterUnknown a function, and you cannot assign to a function.

error C2659: '=': function as left operand

https://www.stroustrup.com/sac10-constexpr.pdf

