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Instead of replacing the awaiter so it doesn’t retrieve the results, we can go ahead and
collect the results, and then return them. The Windows Runtime doesn’t have a convenient
way to return a strongly-typed heterogeneous collection. Structures must be declared in
metadata, and returning a vector of IInspectables is not strongly-typed.

Fortunately, we can use our friend simple_task, which has since been added to the Windows
Implementation Library as wil: :task.

template<typename... Results>

wil::task<std::tuple<Results>>

when_all with_results(
winrt::Windows: :Foundation::IAsyncOperation<Results>... asyncs)
co_return std::make_tuple(co_await asyncs...);

auto [resultl, result2] =

co_await when_all with_results(DolAsync(), Do2Async());

We wish we could have written

template<typename... Asyncs>
wil::task<auto>

when_all with_results(Asyncs... asyncs)
{

co_return std::make_tuple(co_await asyncs...);
but there is currently no facility in the C++ language for this sort of weirdo template
placeholder usage.

The above formulation does limit you to IAsyncOperation<T>, SO you cannot use other
awaitables with when_all _with_results, like IAsyncOperationWithProgress<T, P>. Adding
IAsyncOperationWithProgress<T, P> supportisn’t so bad, because the result type is available
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from both IAsyncOperation<T> and IAsyncOperationWithProgress<T, P> by checking the
return type of GetResult().

template<typename... Asyncs>

wil::task<std::tuple<
decltype(std::declval<Asyncs>().GetResults())...>>

when_all with_results(Asyncs... asyncs)

{

co_return std::make_tuple(co_await asyncs...);

Or, taking advantage of trailing return types so we don’t need to go through the hassle of

declval:

template<typename... Asyncs>

auto

when_all with_results(Asyncs... asyncs) ->

wil::task<std: :tuple<
decltype(asyncs.GetResults())...>>

co_return std::make_tuple(co_await asyncs...);

Extending support to other types of awaitables, such as wil::task, means having to fire up a
lot of infrastructure to figure out what the co_await return type is.

template<typename T>
using await_result = decltype(std::declval<
awaiter_finder::type<T>>().await_resume());

template<typename... Asyncs>
wil::task<std::tuple<await_result<Asyncs>...>>
when_all with_results(Asyncs... async)

{

co_return std::make_tuple(co_await async...);

Great, you solved one problem but introduced at least two new ones.

First problem is that one of these awaitables might produce a C++ reference. This wasn’'t a
problem with IAsyncOperation, since that never produces a C++ reference, but arbitrary
awaitables might do that. Another problem is that one of the async values might be an
awaitable that completes with void. You can’t put a void inside a tuple.

We'll look more closely at these problems next time.
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