1/31/24, 4:59 PM In C++/WinRT, how can | await multiple coroutines and capture the results?, part 2 - The Old New Thing

In C++/WinRT, how can | await multiple coroutines and
capture the results?, part 2

B” devblogs.microsoft.com/oldnewthing/20240111-00

January 11, 2024

Raymond Chen

Instead of replacing the awaiter so it doesn’t retrieve the results, we can go ahead and
collect the results, and then return them. The Windows Runtime doesn’t have a convenient
way to return a strongly-typed heterogeneous collection. Structures must be declared in
metadata, and returning a vector of IInspectables is not strongly-typed.

Fortunately, we can use our friend simple_task, which has since been added to the Windows
Implementation Library as wil: :task.

template<typename... Results>

wil::task<std::tuple<Results>>

when_all with_results(
winrt::Windows: :Foundation::IAsyncOperation<Results>... asyncs)
co_return std::make_tuple(co_await asyncs...);

auto [resultl, result2] =

co_await when_all with_results(DolAsync(), Do2Async());

We wish we could have written

template<typename... Asyncs>
wil::task<auto>

when_all with_results(Asyncs... asyncs)
{

co_return std::make_tuple(co_await asyncs...);
but there is currently no facility in the C++ language for this sort of weirdo template
placeholder usage.

The above formulation does limit you to IAsyncOperation<T>, SO you cannot use other
awaitables with when_all _with_results, like IAsyncOperationWithProgress<T, P>. Adding
IAsyncOperationWithProgress<T, P> supportisn’t so bad, because the result type is available

https://devblogs.microsoft.com/oldnewthing/20240111-00/ 1/2


https://devblogs.microsoft.com/oldnewthing/20240111-00/?p=109259
https://devblogs.microsoft.com/oldnewthing/20240110-00/?p=109256
https://devblogs.microsoft.com/oldnewthing/20210504-01/?p=105178
https://github.com/microsoft/wil
https://github.com/microsoft/wil

1/31/24, 4:59 PM In C++/WinRT, how can | await multiple coroutines and capture the results?, part 2 - The Old New Thing

from both IAsyncOperation<T> and IAsyncOperationWithProgress<T, P> by checking the
return type of GetResult().

template<typename... Asyncs>

wil::task<std::tuple<
decltype(std::declval<Asyncs>().GetResults())...>>

when_all with_results(Asyncs... asyncs)

{

co_return std::make_tuple(co_await asyncs...);

Or, taking advantage of trailing return types so we don’t need to go through the hassle of

declval:

template<typename... Asyncs>

auto

when_all with_results(Asyncs... asyncs) ->

wil::task<std: :tuple<
decltype(asyncs.GetResults())...>>

co_return std::make_tuple(co_await asyncs...);

Extending support to other types of awaitables, such as wil::task, means having to fire up a
lot of infrastructure to figure out what the co_await return type is.

template<typename T>
using await_result = decltype(std::declval<
awaiter_finder::type<T>>().await_resume());

template<typename... Asyncs>
wil::task<std::tuple<await_result<Asyncs>...>>
when_all with_results(Asyncs... async)

{

co_return std::make_tuple(co_await async...);

Great, you solved one problem but introduced at least two new ones.

First problem is that one of these awaitables might produce a C++ reference. This wasn’'t a
problem with IAsyncOperation, since that never produces a C++ reference, but arbitrary
awaitables might do that. Another problem is that one of the async values might be an
awaitable that completes with void. You can’t put a void inside a tuple.

We'll look more closely at these problems next time.

https://devblogs.microsoft.com/oldnewthing/20240111-00/ 2/2


https://devblogs.microsoft.com/oldnewthing/20230707-00/?p=108402

