1/31/24, 4:59 PM In C++/WinRT, how can | await multiple coroutines and capture the results?, part 3 - The Old New Thing

In C++/WinRT, how can | await multiple coroutines and
capture the results?, part 3

B" devblogs.microsoft.com/oldnewthing/20240112-00

January 12, 2024

Raymond Chen

We saw last time that our when_all with_results function had problems if any of the
awaitables completed with a C++ reference or void. Let’s look at the void case first."

One idea is to just remove any void-things from the tuple. Though it might look weird at the
call site:

auto [resultl, result3] = co_await when_all with_results(
DolAsync(), Do2Async(), Do3Async());

“I'm awaiting three things, but somehow only two things came out?”
Another idea would be to transform a void to std: :monostate. That way, you can write
auto [resultl, ignore, result3] = co_await when_all with_results(

co_await when_all with_results(

DolAsync(), Do2Async(), Do3Async());

Unfortunately, this potentially triggers a “variable never used” error on ignore, and the
language doesn’t currently? let you write

auto [resultl, [[maybe_unused]] ignore, result3] =
co_await when_all with results(

DolAsync(), Do2Async(), Do3Async());
You could receive the tuple and extract the values you want.
auto result = co_await when_all with_results(

DolAsync(), Do2Async(), Do3Async());
auto&& resultl = std::get<@>(std::move(result));
auto&& result2 = std::get<2>(std::move(result));

but that’s the sort of syntax only a mother would love.

Or you could use std: :tie:

https://devblogs.microsoft.com/oldnewthing/20240112-00/ 1/4


https://devblogs.microsoft.com/oldnewthing/20240112-00/?p=109267
https://devblogs.microsoft.com/oldnewthing/20240111-00/?p=109259
https://devblogs.microsoft.com/oldnewthing/20240111-00/?p=109259

1/31/24, 4:59 PM In C++/WinRT, how can | await multiple coroutines and capture the results?, part 3 - The Old New Thing

ResultTypel resultl;
ResultType2 result2;

std::tie(resultl, std::ignore, result2) = co_await
co_await when_all with_results(
DolAsync(), Do2Async(), Do3Async());

This has the benefit of making it clearer that the second awaitable’s result is being
discarded. It has the downside of requiring the result types to be default-constructible with no
unwanted side effects. It also loses references, so you generate extra copies if DoAsync()
functions completed with references.

Even though there’s no good syntax for consuming a tuple with an ignored element, it’s still
arguably better than just returning a smaller tuple.

Okay, so let’s do it. One way is to wrap the awaiter.

template<typename Inner>
struct void_to_monostate_awaitable_wrapper
{
void_to_monostate_awaitable_wrapper(Inner& inner) :
m_awaiter(awaiter_finder::get_awaiter(std::move(inner))) {}

typename awaiter_finder::type<Inner> m_awaiter;

bool await_ready()
{ return m_awaiter.await_ready(); }

template<typename Handle>
auto await_suspend(Handle handle)
{ return m_awaiter.await_suspend(handle); }

using AsyncResult = decltype(m_awaiter.await_resume());

static constexpr bool is_async_result_void =
std::is_same_v<AsyncResult, void>;

using Result = std::conditional_t<
is_async_result_void, std::monostate, AsyncResult>;

AsyncResult await_resume() {
if constexpr (is_async_result_void) {
m_awaiter.await_resume();
return std::monostate{};
} else {
return m_awaiter.await_resume();

}s

https://devblogs.microsoft.com/oldnewthing/20240112-00/ 2/4



1/31/24, 4:59 PM In C++/WinRT, how can | await multiple coroutines and capture the results?, part 3 - The Old New Thing

This awaitable wrapper wraps the original awaiter, but if the original awaiter’s await_resume()
returns void, we change it to std: :monostate.

template<typename... Asyncs>
using when_all result = std::tuple<
typename void_to_monostate_awaitable_wrapper
<Asyncs>::Result...>;

template<typename... Asyncs>
wil::task<when_all result<Asyncs...>>
when_all with_results(Asyncs... async)
{
co_return when_all result<Asyncs...>>(
co_await void_to_monostate_awaitable_wrapper(async)...);

Another way is to wrap the awaitable inside another coroutine.

template<typename Async>
struct awaitable_traits

{
using Awaiter = typename awaiter_finder::type<Async>;
using Result = decltype(std::declval<Awaiter>().await_resume());
static constexpr bool is_void_result =
std::is_same_v<Result, void>;
using TransformedResult = std::conditional_t«
is_void_result, std::monostate, Result>;
¥
template<typename... Asyncs>

using when_all result = std::tuple<
typename awaitable_traits<Asyncs>::TransformedResult...>;

template<typename... Asyncs>
wil::task<when_all_ result<Asyncs...>>
when_all_with_results(Asyncs... async)
{
co_return when_all result<Asyncs...>(
co_await [async = std::move(async)]()
-> wil::task<typename awaitable_traits<Asyncs>::TransformedResult> {
if constexpr (awaitable_traits<Asyncs>::is_void_result) {
co_await std::move(async);
co_return std::monostate{};
} else {
co_return co_await std::move(async);
}
YO

https://devblogs.microsoft.com/oldnewthing/20240112-00/ 3/4



1/31/24, 4:59 PM In C++/WinRT, how can | await multiple coroutines and capture the results?, part 3 - The Old New Thing

I’'m not a fan of this approach because it makes everything a wil: :task, even if the original
awaitable used some other framework.

Either way, that sure was an awful lot of typing, and we haven’t even dealt with the case of
what to do if one of the awaitables encounters an exception. Do we want to throw the first
exception we encounter? Do we want to capture them and return a tuple of std: :variant<T,
std::exception_ptr>s, so the caller can decode which awaitables failed and which
succeeded?

As with our lengthy discussion of waiting for multiple C++ coroutines to complete before
propagating failure, the answer appears to be “Why are you even bothering to write this
function at all?”: The when_all helper is really just a crutch. You may as well just await them
all yourself at the call site.

auto opl = DolAsync();
auto op2 = Do2Async();
auto op3 = Do3Async();

auto resultl = co_await opl;
co_await op2;
auto result3 = co_await op3;

Now it's obvious that you’re starting three operations, letting them run in parallel (assuming
they are hot-start), saving the results of the first and third, and ignoring the results of the
second. The exception handling story is also obvious from the code: We report exceptions
from op1 first, then op2, and then op3.

' The stalled Regular Void proposal would have allowed for it.

2 There is a C++26 proposal for attributes for structured bindings.

https://devblogs.microsoft.com/oldnewthing/20240112-00/ 4/4


https://wg21.link/p0146r1
https://wg21.link/p0609r2

