
1/31/24, 4:58 PM A comparison of various implementations of the Windows Runtime IMemoryBuffer - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240129-00/ 1/3

January 29, 2024

A comparison of various implementations of the
Windows Runtime IMemoryBuffer

devblogs.microsoft.com/oldnewthing/20240129-00

Raymond Chen

In my studies of the IMemoryBuffer interface, I found three implementations of that interface
in the Windows Runtime.

Windows.Foundation.MemoryBuffer, obtained from Buffer.CreateMemoryBufferOver‐
IBuffer().
Windows.Graphics.Imaging.BitmapBuffer, obtained from SoftwareBitmap.LockBuffer().
Unnamed class obtained from PerceptionFrame.FrameData.

We also wrote our own fourth implementation, which we called CustomMemoryBuffer, that lets
you turn any block of memory into a MemoryBuffer.

All four of them behave differently. Let’s compare.

 
Memory-
Buffer

Bitmap-
Buffer

Frame-
Data

Custom-
Memory-
Buffer

Thread-safe? No Yes Yes Yes

IMemoryBuffer supports
IMemoryBufferByteAccess?

No No Yes Yes

CreateReference after Close Empty

Empty references raise Closed
event?

Yes No No Yes

Raises Closed event automatically
when released?

Yes No Yes Yes

https://devblogs.microsoft.com/oldnewthing/20240129-00/?p=109325
https://devblogs.microsoft.com/oldnewthing/20240126-00/?p=109322


1/31/24, 4:58 PM A comparison of various implementations of the Windows Runtime IMemoryBuffer - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240129-00/ 2/3

Can extend lifetime during Closed
event handler

No Yes No Yes

Buffer valid during Closed event? Yes No No Yes

Can call methods during Closed
event

Yes Yes No Yes

Buffer of empty or closed
reference

pointer = nullptr and size = 0

Memory freed when… IMemoryBuffer and all IMemoryBufferReferences
have been closed or destructed

All happy memory buffers look alike. Each unhappy memory buffer is unhappy in its own
way.

The standard MemoryBuffer has the problem of not being thread-safe. If you call Close at the
same time as CreateReference, you may experience use-after-free bugs. And if you call Close
twice simultaneously, you can add to your woes null pointer crashes, over-release of the
underlying IBuffer, and double-raising of the the Closed event, depending on exactly how
the race plays out.

All four implementations agree that if you call CreateReference on a closed IMemoryBuffer,
you get an “empty reference”. An empty reference is one that protects no memory. If you ask
for the buffer of an empty reference, you get a null pointer and a size of zero.

In all of the implementations except FrameData, empty references raise the Closed event.

The BitmapBuffer‘s memory buffer reference raises the Closed event only on an explicit call
to Closed. The others raise the Closed event either on explicit closure or when the last
reference is released. This means that BitmapBuffer reference’s Closed event is even more
unreliable than the Closed event already is by its nature.

The MemoryBuffer and FrameData ignore attempts by the Closed event handler to extend the
reference’s lifetime. The biggest consequence of this is that the Closed event in those
implementations will corrupt memory if consumed from a GC language. The BitmapBuffer
sneakily passes this test because it is masked by the other defect of simply not raising the
Closed event in the dangerous scenario in the first place.

https://en.wikipedia.org/wiki/Anna_Karenina_principle
https://en.wikipedia.org/wiki/Anna_Karenina_principle
https://devblogs.microsoft.com/oldnewthing/20240124-00/?p=109311


1/31/24, 4:58 PM A comparison of various implementations of the Windows Runtime IMemoryBuffer - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240129-00/ 3/3

The BitmapBuffer and FrameData raise the Closed event after freeing the memory, which
means that the event is useless for triggering cleanup: Since you are told that the memory
has been freed only after it happened, all you’re really learning is that “Oops, you already
corrupted memory.”

The FrameData has the bonus insult of passing you an IMemoryBufferReference in the Closed
handler that cannot be used! Any attempt to obtain the buffer’s capacity or pointer will hang.
(That’s because it raises the Closed event while still holding its internal lock. Calling to
outside code while holding a lock is a bad idea for reasons like this.)

Our CustomMemoryBuffer tries to avoid all of these little defects.

But what if you are forced to use one of the other three implementations of IMemoryBuffer, or
some other fifth implementation from an external source that isn’t even on the list. Seeing as
the first three attempts at implementing IMemoryBuffer all failed in different ways, what
confidence do you have that an unknown implementation will be well-behaved?

We’ll solve this problem next time. The answer is right under our nose.


