
1/13

Nikolaos Pantazopoulos

Pikabot Updates | ThreatLabz
zscaler.com/blogs/security-research/d-evolution-pikabot

Concerned about VPN vulnerabilities? Learn how you can benefit from our VPN migration
offer including 60 days free service.

Talk to an expert
Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

Security Research

The (D)Evolution of Pikabot

https://www.zscaler.com/blogs/security-research/d-evolution-pikabot
https://www.zscaler.com/demo/zero-trust-solution-for-ivanti-vpn-exploit
https://www.zscaler.com/blogs?type=security-research


2/13

NIKOLAOS PANTAZOPOULOS - Nikolaos Pantazopoulos
February 12, 2024 - 9 min read

Introduction

Pikabot is a malware loader that originally emerged in early 2023. Over the past year,
ThreatLabz has been tracking the development of Pikabot and its modus operandi. There
was a significant increase in usage of Pikabot in the second half of 2023, following the FBI-
led takedown of Qakbot. This was likely the result of a BlackBasta ransomware affiliate
replacing Qakbot with Pikabot for initial access. However, Pikabot ceased activity shortly
after Christmas 2023, with its version number being 1.1.19 at that time.

In recent campaigns, which started in February 2024, Pikabot reemerged with significant
changes in its code base and structure. Although it appears to be in a new development
cycle and testing phase, the developers have reduced the complexity of the code by
removing advanced obfuscation techniques and changing the network communications.

Key Takeaways

Pikabot is a malware loader that was first observed in early 2023 and became very
active following the takedown of Qakbot in August 2023.
In December 2023, Pikabot activity ceased, possibly as a result of a new version of
Qakbot that emerged. In February 2024, a new version of Pikabot was released with
significant changes.
Previous versions of Pikabot used advanced string encryption techniques, which have
been replaced with simpler algorithms.
Pikabot now stores all configuration elements in a single memory block, similar to
Qakbot. In prior versions, Pikabot decrypted necessary configuration elements only
when required.
Pikabot continues to use HTTP for command-and-control, but its network protocol has
changed, including the network command IDs and the encryption algorithms.

Technical Analysis

As covered in our previous technical analysis of Pikabot, the malware consists of two
components: a loader and a core module. The core module is responsible for executing
commands and injecting payloads from a command-and-control server. The malware uses a
code injector to decrypt and inject the core module. It employs various anti-analysis

https://www.zscaler.com/author/npantazopoulos
https://www.zscaler.com/blogs/security-research/technical-analysis-pikabot


3/13

techniques and string obfuscation. Pikabot uses similar distribution methods, campaigns,
and behaviors as Qakbot. The malware acts as a backdoor, allowing the attacker to control
the infected system and distribute other malicious payloads such as Cobalt Strike.

In the following sections, we will describe the latest Pikabot variant, including its capabilities
and notable changes compared to previous versions. The analysis was performed on
Pikabot binaries with version 1.8.32.

Anti-analysis techniques

As with previous versions of Pikabot, this variant employs a series of different anti-analysis
techniques to make the analysis more time-consuming. It should be noted that none of the
methods below presents any significant advanced capabilities. Furthermore, Pikabot used a
series of more advanced detection features in its loader component in previous versions of
the malware.

Strings encryption

The most notable change is the string obfuscation. In previous versions of Pikabot, each
string was obfuscated by combining the RC4 algorithm with AES-CBC. This method was
highly effective in preventing analysis, particularly when it came to automated configuration
extraction. To successfully analyze Pikabot, an analyst would need to detect not only the
encrypted string but also its unique RC4 key. Additionally, they would need to extract the
AES key and initialization vector, which are unique to each Pikabot payload.It should be
noted that the approach the Pikabot malware developers followed is similar to the
ADVobfuscator.

In the latest version of Pikabot, the majority of the strings are either constructed by retrieving
each character and pushing it onto the stack (Figure 1) or, in some rare cases, a few strings
are still encrypted using the RC4 algorithm only.

https://www.zscaler.com/blogs/security-research/hibernating-qakbot-comprehensive-study-and-depth-campaign-analysis
https://github.com/andrivet/ADVobfuscator


4/13

Figure 1. String stack construction

Junk instructions

This anti-analysis technique was also implemented in previous versions of Pikabot. Pikabot
inserts junk code between valid instructions. The junk code is either inlined in the function or
a call is made to a function, which contains the junk code (Figure 2).

Figure 2. Junk code



5/13

Anti-debug methods

Pikabot uses two methods to detect a debugging session. They are:

Reading the BeingDebugged flag from the PEB (Process Environment Block).
Calling the Microsoft Windows API function CheckRemoteDebuggerPresent.

Pikabot constantly performs the debugging checks above in certain parts of its code. For
example, when it (en/de)codes network data or when it makes a request to receive a network
command.

Anti-sandbox evasion

In addition to the anti-debugging checks above, Pikabot uses the following methods to evade
security products and sandboxes:

Pikabot utilizes native Windows API calls.
Pikabot delays code execution at different stages of its code. The timer is randomly
generated each time.
Pikabot dynamically resolves all required Windows API functions via API hashing.

A Python representation of the algorithm is available below.

Language detection

Identical to previous versions, Pikabot stops execution if the operating system's language is
any of the following:

Russian (Russia)
Ukrainian (Ukraine)

This is likely an indication that the threat actors behind Pikabot are Russian-speaking and
may reside in Ukraine and/or Russia. The language check reduces the chance of law
enforcement action and potential criminal prosecution in those regions.



6/13

Bot initialization phase

Unlike previous versions, this version of Pikabot stores all settings and information in a single
structure at a global address (similar to Qakbot). The analyzed structure is shown below. For
brevity, we redacted non-important items of the structure (such as Windows API names).

Bot configuration



7/13

The latest version of Pikabot stores its entire configuration in plaintext in one address. This is
a significant drawback since in previous versions, Pikabot decrypted each required element
at runtime and only when required. In addition, many of the configuration elements (e.g.
command-and-control URIs) were randomized. 

ANALYST NOTE: Despite their randomization, all configuration elements were valid on the
server-side. If a bot sent incorrect information, then it would get rejected/banned by the
command-and-control server.

The configuration structure is the following:



8/13

Once Pikabot parses the plaintext configuration, it erases it by setting all bytes to zero. We
assess that this is an anti-dumping method to avoid automating the extraction of the
configuration.

Lastly, Pikabot loads any remaining required Windows API functions and generates a bot
identifier for the compromised host. The algorithm is similar to previous versions and can be
reproduced with the following Python code.

ANALYST NOTE: In some samples, Pikabot does not read the volume serial number due to
a bug in their code that causes a failure when calling GetVolumeInformationW.

Network communications

Pikabot contacts the command-and-control server to request and receive network
commands. In this version, the network protocol has considerably changed. Pikabot starts by
registering the compromised host to its server. 

First, Pikabot collects information from the compromised host, such as:
Monitor’s display settings
Windows version
Hostname/username and operating system’s memory size



9/13

Beacon and delay settings
Process information such as the process ID, parent process ID and number of threads
(see the description of network command 0x985 for a comprehensive list).
Bot’s version and campaign name
Name of the domain controller

Then Pikabot appends the following information to the registration packet:

32-bytes network RC4 key (unique per host), which remains the same for the session.
In previous versions, Pikabot was using AES-CBC with a random key/IV per request.
Unknown registry key name. We observed it used only in the network command with ID
0x246F.
Number of swap rounds used for encoding the data. This remains the same for the rest
of the session.

Next, Pikabot encrypts the data using the RC4 algorithm, encodes the encrypted output,
picks a random URI from its list, and sends the data with a POST request to the command-
and-control server.

The encoding involves bytes swapping for N times, where N is a randomly generated
number in the range 0-25.

ANALYST NOTE: Despite the fact that a round number is set in the configuration (see the
configuration structure), this value is ignored and Pikabot replaces it with a random value.
Moreover, Pikabot has completely removed the JSON format in its network packets and
inserts everything in a raw format.

If the bot registration is successful, Pikabot starts an infinite loop to request and execute
commands. 

Each incoming network command (with the exception of network command with ID 0x164)
has a task ID that is placed at the start of the (decrypted) packet as a QWORD value. In
Table 1 below, we list the identified network commands along with a description of their
functionality.

Command
ID Description

0x164 Requests command from command-and-control server. The packet includes
the command ID, size of bot ID, and the bot ID. The server replies with the
same command ID if there is no network command for the bot to execute.

0x555 Reports the output of the executed network command to the command-and-
control server.



10/13

Command
ID Description

0x1291 Registers the bot. An unknown integer value (0x1687) is appended in the
packet at offset 8.

0x1FED Updates beacon time.

0x1A5A Terminates/kills the bot.

0x2672 Not implemented

0x246F Writes a file to disk and adds registry data using the value name specified in
the configuration (unknown_registry_key_name).

0xACB Executes the system command and sends back the output. Includes the
error code 0x1B3 if there is no output.

0x36C Injects the code of a downloaded PE file. The target process information is
specified in the network packet.

0x792 Injects the code of a downloaded shellcode. The target process information
is specified in the network packet.

0x359
Executes system command and sends back the output.

Note: Same as 0xACB but does not send the error code.

0x3A6
Executes system command and sends back the output.

Note: Same as 0xACB but does not send the error code.

0x240
Executes system command and sends back the output.

Note: Same as 0xACB but does not send the error code.

0x985 Collects processes’ information. These are:

Executable's filename
Process ID
Boolean flag, which indicates if it is a Pikabot process.
Boolean flag, which indicates if Pikabot can access the process with all
possible access rights.
Number of threads
Base priority of threads
Process architecture
Parent process ID

0x982 Not implemented



11/13

Table 1. Pikabot Network Commands

Conclusion

Despite its recent inactivity, Pikabot continues to pose a significant cyber threat and is in
constant development. However, the developers have decided to take a different approach
and decrease the complexity level of Pikabot's code by removing advanced obfuscation
features. Moreover, based on our code analysis, it appears that certain features and network
commands have not been implemented yet and are still a work in progress.

Zscaler ThreatLabz continues to track this threat and add detections to protect our
customers.

Indicators Of Compromise (IOCs)

SHA256 Description

555687ca3149e23ee980a3acf578e0572da556cf34c87aecf48596834d6b496f Pikabot
sample
(version
1.8.32-beta)

ca5fb5814ec62c8f04936740aabe2664b3c7d036203afbd8425cd67cf1f4b79d Pikabot
sample
(version
1.8.32-beta)

IOC Description

104.129.55[.]103:2224 Command-and-Control server

178.18.246[.]136:2078 Command-and-Control server

158.220.80[.]167:2967 Command-and-Control server

104.129.55[.]104:2223 Command-and-Control server

23.226.138[.]161:5242 Command-and-Control server



12/13

IOC Description

37.60.242[.]85:9785 Command-and-Control server

23.226.138[.]143:2083 Command-and-Control server

37.60.242[.]86:2967 Command-and-Control server

85.239.243[.]155:5000 Command-and-Control server

158.220.80[.]157:9785 Command-and-Control server

65.20.66[.]218:5938 Command-and-Control server

95.179.191[.]137:5938 Command-and-Control server

139.84.237[.]229:2967 Command-and-Control server



 

Zscaler Coverage



13/13

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators related to Pikabot at various levels with the following threat names:

Thank you for reading

Was this post useful?

Yes, very!Not really

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.




https://www.zscaler.com/privacy/company-privacy-policy

