
1/21

A technical analysis of the BackMyData ransomware
used to attack hospitals in Romania

cybergeeks.tech/a-technical-analysis-of-the-backmydata-ransomware-used-to-attack-hospitals-in-romania/

Summary

According to BleepingComputer, a ransomware attack that occurred starting 0n February 11
forced 100 hospitals across Romania to take their systems offline. BackMyData ransomware,
which took credit for it, belongs to the Phobos family. The malware embedded an AES key
that is used to decrypt its configuration containing whitelisted extensions, files, and
directories, a public RSA key that is used to encrypt AES keys used for files’ encryption, and
other information. Persistence is achieved by creating an entry under the Run registry key
and copying the malware to the Startup folder. The ransomware encrypts the local drives as
well as the network shares. It deletes all Volume Shadow Copies and runs commands to
disable the firewall.

The files are encrypted using the AES256 algorithm, with the AES key being encrypted using
the public RSA key decrypted from the configuration. The malware appends 6 custom bytes
at the end of every encrypted file. In the end, the ransomware drops two ransom notes called
“info.txt” and “info.hta” that contain information about how to contact the threat actor.

Technical analysis

SHA256: 396a2f2dd09c936e93d250e8467ac7a9c0a923ea7f9a395e63c375b877a399a6

The ransomware comes with an encrypted configuration that is decrypted using a hard-
coded AES key:

Figure 1

As we can see below, the configuration is stored in an encrypted form:

https://cybergeeks.tech/a-technical-analysis-of-the-backmydata-ransomware-used-to-attack-hospitals-in-romania/
https://www.bleepingcomputer.com/news/security/ransomware-attack-forces-100-romanian-hospitals-to-go-offline/

2/21

Figure 2

The malware implements the AES algorithm in its code and doesn’t rely on Windows APIs:

Figure 3

3/21

Figure 4

The malicious process retrieves the number of milliseconds elapsed since the system was
started using GetTickCount:

Figure 5

The GetLocaleInfoW function is used to obtain the default locale for the operating system
(0x800 = LOCALE_SYSTEM_DEFAULT, 0x58 = LOCALE_FONTSIGNATURE). The binary
verifies whether the 9th bit, which represents Cyrillic alphabets, is cleared. This technique of
avoiding systems that have this setting as default was also documented by Malwarebytes in
their article about Phobos ransomware.

https://learn.microsoft.com/en-us/windows/win32/intl/unicode-subset-bitfields
https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware

4/21

Figure 6

An example of decrypting values from configuration is highlighted below:

Figure 7

Figure 8

The binary retrieves the path of the executable file of the current process via a function call
to GetModuleFileNameW (see Figure 9).

Figure 9

Interestingly, the process is looking for a file called “backm” that wasn’t previously created by
the ransomware (0x80000000 = GENERIC_READ, 0x3 = OPEN_EXISTING):

Figure 10

5/21

The malware extracts the major and minor version numbers of the operating system using
the GetVersion method:

Figure 11

It opens the access token associated with the current process by calling the
OpenProcessToken API (0x8 = TOKEN_QUERY):

Figure 12

The malicious process verifies if the token is elevated using GetTokenInformation (0x14 =
TokenElevation):

Figure 13

The environment variable “%systemdrive%” is expanded, which reveals the drive that
contains the Windows directory:

Figure 14

GetVolumeInformationW is used to obtain the volume serial number:

Figure 15

The ransomware tries to open two mutexes called “Global\\<<BID>><Volume serial
number>00000001” and “Global\\<<BID>><Volume serial number>00000000”, and then
creates them:

Figure 16

6/21

Figure 17

The DLLs and functions necessary to perform some activities are also decrypted from the
configuration. The binary obtains the module handle for a DLL using GetModuleHandleA:

Figure 18

The address of the exported functions is retrieved by calling the GetProcAddress API:

Figure 19

The malware disables file system redirection for the calling thread:

Figure 20

It obtains a handle to the Shell’s desktop window via a function call to GetShellWindow
(Figure 21).

Figure 21

Using the above handle, the process calls the GetWindowThreadProcessId function to
retrieve the identifier of the process that created the window (explorer.exe):

Figure 22

The binary opens the “explorer.exe” process using the OpenProcess method (0x400 =
PROCESS_QUERY_INFORMATION):

Figure 23

OpenProcessToken is used to open the access token associated with the above process
(0x02000000 = MAXIMUM_ALLOWED):

7/21

Figure 24

The DuplicateTokenEx API is utilized to create a new access token that duplicates the token
mentioned above (0x2 = SecurityImpersonation, 0x1 = TokenPrimary):

Figure 25

The ransomware spawns itself running in the security context of the newly created token
(Figure 26).

Figure 26

It creates a new thread that will run the following commands in the sub_EB4B85 function:

vssadmin delete shadows /all /quiet – delete all Volume Shadow Copies
wmic shadowcopy delete – delete all Volume Shadow Copies
bcdedit /set {default} bootstatuspolicy ignoreallfailures – ignore errors if there is a failed
boot, shutdown, or checkpoint
bcdedit /set {default} recoveryenabled no – disable automatic repair
wbadmin delete catalog -quiet – delete the backup catalog on the machine
netsh advfirewall set currentprofile state off – disable the firewall for the current network
profile
netsh firewall set opmode mode=disable – disable the firewall

Figure 27

8/21

The process copies its executable to the “%AppData%\Local” directory, as highlighted in
Figure 28.

Figure 28

RegOpenKeyExW is used to open the Run registry key (0x80000002 =
HKEY_LOCAL_MACHINE, 0x20106 = KEY_WRITE | KEY_WOW64_64KEY):

Figure 29

The ransomware establishes persistence by creating an entry named based on the
executable name, which points to the newly created executable:

Figure 30

The malicious binary tries to copy the non-existent file called “backm” to the same directory:

Figure 31

The second persistence mechanism consists of copying the executable to the Startup folder.

The following extensions are targeted, but the ransomware will encrypt other extensions as
well:

fdb sql 4dd 4dl abs abx accdb accdc accde adb adf ckp db db-journal db-shm db-wal
db2 db3 dbc dbf dbs dbt dbv dcb dp1 eco edb epim fcd gdb mdb mdf ldf myd ndf nwdb
nyf sqlitedb sqlite3 sqlite

Also, the ransomware doesn’t encrypt files that were previously encrypted by other
ransomware families:

9/21

backmydata actin DIKE Acton actor Acuff FILE Acuna fullz MMXXII GrafGrafel monero
n3on jopanaxye 2700 DEVOS kmrox s0m1n qos cg ext rdptest S0va 6y8dghklp
SHTORM NURRI GHOST FF6OM6 blue NX BACKJOHN OWN FS23 2QZ3 top
blackrock CHCRBO G-STARS faust unknown STEEL worry WIN duck fopra unique
acute adage make Adair MLF magic Adame banhu banjo Banks Banta Barak Caleb
Cales Caley calix Calle Calum Calvo deuce Dever devil Devoe Devon Devos dewar
eight eject eking Elbie elbow elder phobos help blend bqux com mamba KARLOS
DDoS phoenix PLUT karma bbc CAPITAL WALLET LKS tech s1g2n3a4l MURK makop
ebaka jook LOGAN FIASKO GUCCI decrypt OOH Non grt LIZARD FLSCRYPT SDK
2023 vhdv

The following files and directories will also be skipped during the encryption process:

info.hta info.txt boot.ini bootfont.bin ntldr ntdetect.com io.sys backm
C:\WINDOWS C:\ProgramData\microsoft\windows\caches

The process splits further malicious activity into multiple threads that will be described in the
following paragraphs. The following functions will be executed: sub_EB22EE, sub_EB239A,
sub_EB2161, sub_EB1A76, and sub_EB1CC5.

Figure 32

Thread activity – sub_EB22EE function

The malware opens the access token associated with the current process (0x20 =
TOKEN_ADJUST_PRIVILEGES):

Figure 33

The LookupPrivilegeValueW method is used to extract the locally unique identifier (LUID)
that represents the “SeDebugPrivilege” privilege:

Figure 34

10/21

The malicious process enables the above privilege via a call to AdjustTokenPrivileges:

Figure 35

The following processes will be killed because they could lock files to be encrypted:

msftesql.exe sqlagent.exe sqlbrowser.exe sqlservr.exe sqlwriter.exe oracle.exe
ocssd.exe dbsnmp.exe synctime.exe agntsvc.exe mydesktopqos.exe isqlplussvc.exe
xfssvccon.exe mydesktopservice.exe ocautoupds.exe agntsvc.exe agntsvc.exe
agntsvc.exe encsvc.exe firefoxconfig.exe tbirdconfig.exe ocomm.exe mysqld.exe
mysqld-nt.exe mysqld-opt.exe dbeng50.exe sqbcoreservice.exe excel.exe infopath.exe
msaccess.exe mspub.exe onenote.exe outlook.exe powerpnt.exe steam.exe
thebat.exe thebat64.exe thunderbird.exe visio.exe winword.exe wordpad.exe

The malware takes a snapshot of all processes in the system, as displayed in the figure
below.

Figure 36

The processes are enumerated using the Process32FirstW and Process32NextW APIs:

Figure 37

Figure 38

Any target process is stopped using the TerminateProcess method:

11/21

Figure 39

Thread activity – sub_EB239A function

OpenProcessToken is utilized to open the access token associated with the process (0x8 =
TOKEN_QUERY):

Figure 40

The binary verifies again if the token is elevated by calling the GetTokenInformation API
(0x14 = TokenElevation):

Figure 41

It calls again the OpenMutexW and CreateMutexW methods with the “Global\\<<BID>>
<Volume serial number>00000000” mutex name:

Figure 42

Thread activity – sub_EB2161 function

The ransomware uses events to synchronize threads. It creates two unnamed event objects
using CreateEventW:

12/21

Figure 43

The NetBIOS name of the local machine is extracted (Figure 44).

Figure 44

WNetOpenEnumW is used to start an enumeration of all currently connected resources (0x1
= RESOURCE_CONNECTED):

Figure 45

The enumeration continues by calling the WNetEnumResourceW function:

Figure 46

The process obtains the interface–to–IPv4 address mapping table via a function call to
GetIpAddrTable, as shown below:

Figure 47

Every IP address extracted above is converted from network order to host byte order using
ntohl:

Figure 48

The malware creates a TCP socket (0x2 = AF_INET, 0x1 = SOCK_STREAM, 0x6 =
IPPROTO_TCP):

Figure 49

13/21

It tries to connect to every host on the network on port 445 in order to encrypt every available
network share:

Figure 50

Thread activity – sub_EB4B85 function

The process creates two anonymous pipes by calling the CreatePipe method (see Figure
51).

Figure 51

The read handles are made inheritable using SetHandleInformation (0x1 =
HANDLE_FLAG_INHERIT):

Figure 52

The ransomware creates a “cmd.exe” process that will execute multiple commands:

Figure 53

The commands responsible for disabling the firewall, deleting all Volume Shadow Copies,
and so on, are transmitted to the newly created process via pipes:

Figure 54

Thread activity – sub_EB1CC5 function

14/21

This thread keeps extracting a bitmask representing the currently available disk drives using
the GetLogicalDrives API:

Figure 55

Thread activity – sub_EB1A76 function

The malware decrypts the public RSA key that will be used to encrypt the AES256 key used
for file’s encryption. The same key was used by Phobos ransomware since 2019 according
to Talos.

Figure 56

It extracts the current local date and time, the current process and thread IDs, and other
information using multiple functions:

https://blog.talosintelligence.com/deep-dive-into-phobos-ransomware/

15/21

Figure 57

The binary creates a new thread that will traverse the network shares and drives in order to
extract files to be encrypted:

Figure 58

Thread activity – sub_EB56B3 function

Two new threads, which will be responsible for file’s encryption, are created:

Figure 59

The files are enumerated using the FindFirstFileW and FindNextFileW methods:

16/21

Figure 60

Figure 61

The malware sets the event objects to the signaled state via a function call to SetEvent:

Figure 62

The process waits until the new threads finish their execution using the
WaitForMultipleObjects function.

Thread activity – sub_EB54BF function

The ransomware opens a file to be encrypted in reading mode (0x80000000 =
GENERIC_READ, 0x7 = FILE_SHARE_DELETE | FILE_SHARE_WRITE |
FILE_SHARE_READ, 0x3 = OPEN_EXISTING):

Figure 63

It retrieves the size of the file using the GetFileSizeEx API:

Figure 64

17/21

The size is compared with 0x180000 bytes (1.5MB), and the files having more bytes are
partially encrypted. The rest of the files are totally encrypted:

Figure 65

As we can see below, not only the “.backmydata” extension will be added to an encrypted
file, but also the volume serial number and the threat actor’s email address:

Figure 66

The file’s content is read using the ReadFile method (see Figure 67).

Figure 67

There is a custom implementation of the AES256 algorithm, as highlighted in the figure
below.

18/21

Figure 68

The content is encrypted using the AES256 algorithm and written to the newly created file:

Figure 69

The file’s name is encrypted as well and will appear in the encrypted file:

19/21

Figure 70

The following information is also written to the encrypted file: unencrypted 16-byte IV, RSA-
encrypted AES256 key, and 6 bytes decrypted from the config that identifies the ransomware
“DD F9 CC F5 B3 44”:

Figure 71

The unencrypted file is overwritten with zeros and deleted afterwards:

Figure 72

The structure of an encrypted file is displayed below. We’ve already described the meaning
of the buffers.

20/21

Figure 73

The ransomware drops two ransom notes: “info.txt” and “info.hta”. The communication with
the threat actor can be done via email or Session messenger.

Figure 74

INDICATORS OF COMPROMISE

SHA256

396a2f2dd09c936e93d250e8467ac7a9c0a923ea7f9a395e63c375b877a399a6

BackMyData ransom notes

21/21

info.txt, info.hta

Files created

%AppData%\Local\<Executable name>

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup\<Executable name>

Registry values

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run\<Executable
name>

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\<Executable
name>

Processes spawned

vssadmin delete shadows /all /quiet

wmic shadowcopy delete

bcdedit /set {default} bootstatuspolicy ignoreallfailures

bcdedit /set {default} recoveryenabled no

wbadmin delete catalog -quiet

netsh advfirewall set currentprofile state off

netsh firewall set opmode mode=disable

Mutexes

Global\\<<BID>><Volume serial number>00000000

Global\\<<BID>><Volume serial number>00000001

References

https://www.bleepingcomputer.com/news/security/ransomware-attack-forces-100-romanian-
hospitals-to-go-offline/

https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware

https://blog.talosintelligence.com/deep-dive-into-phobos-ransomware/

https://docs.microsoft.com/en-us/windows/win32/api/

https://www.bleepingcomputer.com/news/security/ransomware-attack-forces-100-romanian-hospitals-to-go-offline/
https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware
https://blog.talosintelligence.com/deep-dive-into-phobos-ransomware/
https://docs.microsoft.com/en-us/windows/win32/api/

