4/1/24, 11:33 AM How well does C++/WinRT com_ptr support class template argument deduction (CTAD)? - The Old New Thing

How well does C++/WinRT com_ptr support class
template argument deduction (CTAD)?

B" devblogs.microsoft.com/oldnewthing/20240319-00
March 19, 2024

Raymond Chen

Continuing our investigation of which C++ COM wrappers support class template argument
deduction (CTAD), next up is the C++/WinRT winrt: :com_ptr.

This one is easy: C++/WinRT’s com_ptr doesn’t support CTAD, and it doesn’t even try. There
is no com_ptr<T> constructor that takes a T*. If you want a com_ptr to copy an existing
pointer, you call com_ptr::copy_from:

IWidget* p;

winrt::com_ptr<IWidget> smart;
smart.copy_from(p);

C++/WinRT eschews the constructor that makes a copy of an inbound pointer on the theory
that it's unclear whether it is taking ownership of the pointer or merely sharing it.

The library author could have provided a deduction guide for the “take ownership”
constructor:

template<typename T>
com_ptr(T*, take_ownership_from_abi_t) -> com_ptr<T>;

As a consumer, though, you shouldn’t be creating deduction guides for somebody else’s
classes. Instead, you can use a maker function.

template<typename T>

winrt::com_ptr<
std::enable_if_ t<std::<is_base_of_v<::IUnknown, T>, T>>
make_com_ptr(T* p, winrt::take_ownership_from_abi_t)

{

return { p, winrt::take_ownership_from_abi };

}

There is some extra magic in the return value to activate the function only if T derives from
: : IUnknown. This avoids accidentally creating a com_ptr from a C++/WinRT ABI pointer
(which are in the impl namespace and are therefore off-limits).

https://devblogs.microsoft.com/oldnewthing/20240319-00/ 1/2


https://devblogs.microsoft.com/oldnewthing/20240319-00/?p=109552
https://devblogs.microsoft.com/oldnewthing/20240311-00/?p=109521
https://devblogs.microsoft.com/oldnewthing/20240311-00/?p=109521

4/1/24, 11:33 AM How well does C++/WinRT com_ptr support class template argument deduction (CTAD)? - The Old New Thing

If you feel so brave, you can also create a maker function that copies the ABI pointer.

template<typename T>

winrt::com_ptr<T>
std::enable_if t<std::<is_base_of_v<::IUnknown, T>, T>>
make_com_ptr_from_copy(T* p)

{
winrt::com_ptr<T> result;
result.copy_from(p);
return result;

}

Bonus chatter: The last time | made a survey of C++ COM wrappers, someone asked me to
include C++/CX in the list. But C++/CX doesn’t support wrappers around classic COM
interfaces; it supports only Windows Runtime interfaces. Therefore, the answer for C++/CX
is always “Not supported. Nothing to see here.”

https://devblogs.microsoft.com/oldnewthing/20240319-00/ 2/2



