
4/1/24, 11:33 AM How can I tell C++ that I want to discard a nodiscard value? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240329-00/ 1/2

March 29, 2024

How can I tell C++ that I want to discard a nodiscard
value?

devblogs.microsoft.com/oldnewthing/20240329-00

Raymond Chen

C++ lets you add the [[nodiscard]] attribute to a function return value to indicate that the
caller must use the result.

Given the declaration

[[nodiscard]] int important();

simply calling the function and allow the value to be discarded produces diagnostics.

void test()
{
 important();
}

clang: ignoring return value of 'int important()', declared with attribute 'nodiscard' [-
Wunused-result]

gcc: ignoring return value of 'int important()', declared with attribute 'nodiscard' [-
Wunused-result]

msvc: C4834: discarding return value of function with [[nodiscard]] attribute

Explicitly casting to (void) works:

void test()
{
 (void)important();
}

Note that this requires a C-style cast. You cannot static_cast or reinterpret_cast to void.

Another option is to store the result into a variable which is attributed as unused, and then
allowing the variable to go out of scope immediately.

https://devblogs.microsoft.com/oldnewthing/20240329-00/?p=109592

4/1/24, 11:33 AM How can I tell C++ that I want to discard a nodiscard value? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240329-00/ 2/2

void test()
{
 { [[maybe_unused]] auto&& unused = important(); }
}

There is a proposal for C++26 to express the discard with std::ignore:

void test()
{
 std::ignore = important();
}

Although the ability to assign to std::ignore is not formally required, in practice, you have
always been able to do it, and the C++ Core Guidelines even recommends it!

The first is tersest, though it suffers from pedagogical issues discussed in the std::ignore
proposal. The third is fairly brief and has the benefit of clarity, but suffers from technically not
being allowed (though everybody allows it in practice, so much so that even the C++ Core
Guidelines were fooled). The second is most verbose, and the only things it has going for it
are the pedagogical avoidance of the (void) cast and the language-lawyer avoidance of
undocumented use of std::ignore. (In other words, the third option is “technically” the most
correct, the best kind of correct.)

There’s an alternate C++26 proposal for expressing the discard with a new [[discard]]
attribute.

void test()
{
 [[discard("reason")]] important();
}

https://wg21.link/p2968r2
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es48-avoid-casts
https://wg21.link/p2992r0
https://wg21.link/p2992r0

