5/2/24, 6:25 AM Adding state to the update notification pattern, part 8 - The Old New Thing

Adding state to the update notification pattern, part 8

B” devblogs.microsoft.com/oldnewthing/20240426-00
April 26, 2024

Raymond Chen

We've been developing two different algorithms for the update notification pattern, one
based on a busy flag and a pending state (and also an alternate version that is not
dependent upon a Ul thread to do implicit serialization), and another based on a change
counter. How do they stack up against each other?

When a new request comes in while a previous request is still being worked on, the pending
state algorithm doesn’t begin working on it right away. It just saves the update for later, and
when the previous request finishes (or is abandoned), the worker will start processing the
new request. This means that you have only one worker at a time, and the worker is working
on only one item at a time.

By comparison, the change counter algorithm does start working on it right away, so you
have two threads both doing work, although one of them will eventually abandon its efforts
once it learns that its request is no longer current. With the change counter algorithm, you
could have many threads working on requests simultaneously, although only one of them will
run to completion.

If your work supports concurrent operations (for example, maybe it's performing a read-only
search), then the change counter algorithm allows lower latency since the most recent
request gets to start right away. However, it also comes at a higher CPU cost, since you can
have multiple workers running, and all but one of them is doing pointless work.

If your work does not support concurrent operations (say, some operations use a mutex to
ensure only one thread can be performing the operation at a time), then the threads
participating in the change counter algorithm will all end up serializing on that mutex, so you
end up burning a bunch of threads which spend most of their time waiting for their turn to
perform the operation. In this case, the pending request algorithm seems better because it
doesn’t spin up threads that “hurry up and wait”.

Pending request | Change counter

https://devblogs.microsoft.com/oldnewthing/20240426-00/ 1/2


https://devblogs.microsoft.com/oldnewthing/20240426-00/?p=109705
https://devblogs.microsoft.com/oldnewthing/20240418-00/?p=109685
https://devblogs.microsoft.com/oldnewthing/20240418-00/?p=109685
https://devblogs.microsoft.com/oldnewthing/20240422-00/?p=109693
https://devblogs.microsoft.com/oldnewthing/20240422-00/?p=109693
https://devblogs.microsoft.com/oldnewthing/20240424-00/?p=109700
https://devblogs.microsoft.com/oldnewthing/20240424-00/?p=109700

5/2/24, 6:25 AM

Adding state to the update notification pattern, part 8 - The Old New Thing

If multiple operations cannot run in parallel on multiple threads, then the change counter
algorithm will create multiple threads, even though only one of them can do work at a time.

https://devblogs.microsoft.com/oldnewthing/20240426-00/

Latency Higher Lower
CPU usage Lower Higher
Thread usage | Single thread Multiple threads

2/2



