
May 1, 2024

Awaiting a set of handles with a timeout, part 2:
Continuing with two

devblogs.microsoft.com/oldnewthing/20240501-00

Raymond Chen

Last time, we tried to await two handles with a common timeout, but ran into a few problems.
First, the timeouts didn’t all start simultaneously, but rather sequentially. Second, we are
taking a chance by saving the awaiter into a local variable rather than awaiting it
immediately.

We can address both problems by awaiting the resume_on_signal immediately, but wrapping
the whole thing inside another coroutine whose return type has well-defined copy behavior.

winrt::Windows::Foundation::IAsyncOperation<bool>
 resume_on_one_signal(HANDLE h,
 winrt::Windows::Foundation::TimeSpan timeout)
{
 co_return co_await winrt::resume_on_signal(h, timeout);
}

wil::task<std::array<bool, 2>>
 resume_on_both_signaled(HANDLE h1, HANDLE h2,
 winrt::Windows::Foundation::TimeSpan timeout = {})
{
 auto await1 = resume_on_one_signal(h1, timeout);
 auto await2 = resume_on_one_signal(h2, timeout);
 co_return std::array<bool, 2>
 { co_await await1, co_await await2 };
}

We solved one problem but introduced another: The C++/WinRT awaiter for IAsyncOperation
(and all of the other asynchonous actions and operations in the Windows Runtime) resumes
execution in the original apartment. In this case, it means that we end up hopping back to the
original apartment, only to perform another co_await immediately. It would be better if we
didn’t have to keep bouncing through that original apartment, especially since we aren’t even
sure that the original apartment will still be there.

Fortunately, C++/WinRT has a way to say that you want to override the default co_await
behavior for IAsyncXxx and allow the coroutine to resume in any apartment.

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 2: Continuing with two - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240501-00/ 1/2

https://devblogs.microsoft.com/oldnewthing/20240501-00/?p=109718
https://devblogs.microsoft.com/oldnewthing/20240430-00/?p=109710

wil::task<std::array<bool, 2>>
 resume_on_both_signaled(HANDLE h1, HANDLE h2,
 winrt::Windows::Foundation::TimeSpan timeout = {})
{
 auto await1 = resume_on_one_signal(h1, timeout);
 auto await2 = resume_on_one_signal(h2, timeout);
 co_return std::array<bool, 2>
 { co_await winrt::resume_agile(await1),
 co_await winrt::resume_agile(await2) };
}

Next time, we’ll try to generalize this to an arbitrary number of handles.

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 2: Continuing with two - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240501-00/ 2/2

