
May 29, 2024

A graphical depiction of the steps in building a C++
executable, basics

devblogs.microsoft.com/oldnewthing/20240529-25

Raymond Chen

One of the things you have to know when trying to diagnose a build failure is understanding
what each step of the build accomplishes, so that you can fix the problem at the correct step.

Here’s the basic idea.

    .h, .cpp

   

    C++ compiler

   

    .obj

 

librarian  

 

.lib  

 

    linker

   

    .dll, .exe

5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, basics - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240529-25/ 1/4

https://devblogs.microsoft.com/oldnewthing/20240529-25/?p=109818


Given a bunch of header files (.h) and C++ source files (.cpp), the C++ compiler produces a
corresponding set of object files (.obj).¹ If your project builds a library, then the object files
are given to the librarian to produce a library file, and that’s your project. In other words, your
library project uses only the top part of the diagram, through to building the .lib file, but
doesn’t go down the other branch that leads to the linker.

    .h, .cpp

   

    C++ compiler

   

    .obj

   

librarian  

   

.lib    

If your project builds an executable module (a .dll or .exe, for example), then the object files
and any input libraries are given to the linker, which then generates the desired module file.
In that case, you’re using the other branch of the diagram that leads to the linker:

    .h, .cpp

   

    C++ compiler

   

    .obj

5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, basics - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240529-25/ 2/4



   

   

   

.lib  

 

    linker

   

    .dll, .exe

Already you know enough to solve this problem:

My solution consists of three projects: A core library, a program that consumes the
library, and a unit test that consumes that same library. I added some code to the core
library, and now the program and unit test are generating linker errors due to a missing
import library used by the code I added. I added that library to the core library’s
AdditionalDependencies, but that didn’t fix it.

Next time, we’ll expand this diagram to include additional tools you may encounter in
Windows projects.

Answer to exercise: The error complaining about the unresolved external symbol is coming
from the linker, so you need to provide the library with that symbol to the linker. The core
library project doesn’t run the linker: It runs the librarian to produce corelibrary.lib. It’s
the program and unit test that consume the corelibrary.lib and produce contoso.exe
and contoso_unittest.exe, respectively. Those are the projects that need the new library
listed in the AdditionalDependencies.

To avoid having to update both the program and unit test each time the build requirements of
the core library change, you might put those special configuration settings in a separate file
that is included by the program and unit test projects, so that any changes need to be made
in only one place.

¹ For unix, the same principles apply, but the file extensions are different. The extension for
object files is .o, the extensions for library files are .a and .so, depending on what type of
library they are. And unix executables traditionally have no extension.

5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, basics - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240529-25/ 3/4

https://devblogs.microsoft.com/oldnewthing/20230222-00/?p=107864


5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, basics - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240529-25/ 4/4


