5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, with XAML and packaging - The Old New Thing

A graphical depiction of the steps in building a C++
executable, with XAML and packaging

=. devblogs.microsoft.com/oldnewthing/20240531-00

May 31, 2024

Rayymond Chen

Last time, we generated a diagram showing how a C++ executable is built, augmented for
classic Win32. Let’'s add in more stuff: XAML and packaging.

.dl
MIDL compiler
.winmd xaml
C++/WinRT compiler XAML compiler
.h, .cpp Xbf .resw
C++ compiler makepri

https://devblogs.microsoft.com/oldnewthing/20240531-00/

1/5


https://devblogs.microsoft.com/oldnewthing/20240531-00/?p=109825
https://devblogs.microsoft.com/oldnewthing/20240530-00/?p=109823
https://devblogs.microsoft.com/oldnewthing/20240530-00/?p=109823

5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, with XAML and packaging - The Old New Thing

.0bj .rc, .ico, .bmp
librarian rc compiler
lib .res
linker
dll, .exe .appxmanifest .pri
packager
.msi, .msix

We still see the core of the compiler and linker on the left hand side, happily consuming C++
source files (.h, .cpp) producing a module (.dll, .exe). We just added still more steps that
either produce C++ source files from other sources, add additional content to the resulting
module, or which package the resulting module.

If there is an .idl file, it is processed by the MIDL compiler, which (depending on what kind of
IDL file you provided) may produce a .winmd file, or C source files. If you're processing .idl
files for C++/WiInRT, then the thing your project uses is the .winmd file. If you're processing
.idl files for C++/WRL, then the thing your project uses is the .h file. And if you want your
interfaces to be marshallable, you will want the .c file that compiles the proxy stubs.

If you have a .winmd file and are using C++/WinRT, then the C++/WinRT compiler studies
the .winmd file and produces .h and .cpp files for your project to use. (C++/WinRT-based
projects use these header files instead of the MIDL ones.)

https://devblogs.microsoft.com/oldnewthing/20240531-00/ 2/5



5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, with XAML and packaging - The Old New Thing

If you have .xaml files, then XAML compiler generates C++ source code for those .xaml files,
using the .winmd files to know how to generate binding code. It also generates .xbf files
(which | correctly guessed stands for XAML binary format) which are used at runtime to
generate the elements you specified in your XAML markup. The C++ source files get
compiled into your project, too.

Now that we have generated all the C++ source files, we can go through the usual procss of
compiling the C++ source files to object files, and possibly generate a .lib.

If your code uses classic Win32 resources, the resource compiler takes the .rc file and any
supporting files (like .ico and .bmp) and produces a .res file, as before.

After all the .obj, .lib, and .res files have been produced, we feed them all to the linker, which
produces the resulting module, a .dll or .exe.

If applicable to your project, the makepri program takes a string resource description file
.resw, as well as all of the .xbf files, and produces a .pri file, which is yet another binary
format for resources.

If your final product requires packaging, then all of the .dll files, .exe files, .pri files, and any
other collateral are gathered together, along with your package’s .appxmanifest, and out
comes an .msi file or .msix file.

This is a very quick overview of the build flow, but now that you see how the pieces fit
together, you will be better-equipped to diagnose build problems. For example, if you get a
XAML compiler error, then the things to investigate are the .xaml and .winmd files in your
project, since those are the pieces that the XAML compiler uses. There’s no point
investigating the manifest file when trying to diagnose a XAML compiler error.

Bonus chatter: If your project is based on C++/CX, then the build flow is different, since
C++/CX doesn’t use .idl files but rather generates the .winmd file from your C++ sources.
The resulting diagram looks weird because there is a circular dependency!

.winmd xaml
4
XAML compiler
.h, .cpp Xbf .resw

https://devblogs.microsoft.com/oldnewthing/20240531-00/ 3/5


https://blogs.windows.com/windowsdeveloper/2018/11/08/xaml-islands-a-deep-dive-part-2/

5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, with XAML and packaging - The Old New Thing

C++/CX compiler makepri
.0bj .rc, .ico, .bmp
librarian rc compiler
lib .res
linker
dll, .exe .appxmanifest .pri
packager
.msi, .msix

Instead of generating the .winmd from an .idl file, the .winmd is generated from the C++
sources, and the C++/CX compiler also consumes the .winmd files when compiling the C++
sources. My understanding is that the C++/CX compiler first makes a “metadata pass” where
it parses the code only to identify the ref classes and their members. It then generates a
.winmd from that information, and then later, in the “real compilation” pass, all of the .winmd
files are used to provide type information to the C++/CX compiler a second time.

In addition to introducing a weird circular dependency, this style of automatic .winmd
generation limits you to the types of things that the automatic .winmd generator understands.
The automatic .winmd generator doesn’t understand Windows Runtime versioning or
contracts, for example, so you can’t use it to produce a v2 API that is backward compatible

https://devblogs.microsoft.com/oldnewthing/20240531-00/ 4/5



5/31/24, 12:27 PM A graphical depiction of the steps in building a C++ executable, with XAML and packaging - The Old New Thing

with the v1 API. Once you make a change, all of your clients have to switch to the v2 API; the

v1 APl doesn’t work any more. This is fine for monolithic programs, but it's bad news if you're
trying to produce reusable components.

https://devblogs.microsoft.com/oldnewthing/20240531-00/ 5/5



