
1/3

June 12, 2024

Lock-free reference-counting a TLS slot using atomics,
part 1

devblogs.microsoft.com/oldnewthing/20240612-00

Raymond Chen

Some time ago, we spent time looking at various lock-free algorithms, one of which is the
lock-free singleton constructor. But suppose you want your singleton to be reference-
counted?

To make things concrete, let’s suppose that we want a class which manages a TLS slot,
allocating it on demand, and freeing it when there are no longer any users.

Let’s start with a sketch of how we want this to work, but without worrying about atomicity
yet.

https://devblogs.microsoft.com/oldnewthing/20240612-00/?p=109887
https://devblogs.microsoft.com/oldnewthing/20110406-00/?p=11023

2/3

// Note: Not finished yet

struct TlsManager

{

 DWORD m_count = 0;

 DWORD m_tls = TLS_OUT_OF_INDEXES;

 void Acquire()

 {

 if (++m_count == 1) {

 m_tls = TlsAlloc();

 THROW_LAST_ERROR_IF(m_tls == TLS_OUT_OF_INDEXES);

 }

 }

 void Release()

 {

 if (--m_count == 0) {

 TlsFree(std::exchange(m_tls, TLS_OUT_OF_INDEXES));

 }

 }

};

struct TlsUsage

{

 TlsUsage() = default;

 explicit TlsUsage(TlsManager& manager) :

 m_manager(&manager) { manager.Acquire(); }

 TlsUsage(TlsUsage&& other) :

 m_manager(std::exchange(other.manager, nullptr)) {}

 TlsUsage& operator=(TlsUsage&& other) {

 std::swap(m_manager, other.m_manager);

 }

 ~TlsUsage()

 {

 if (m_manager) m_manager->Release();

 }

 void* GetValue()

 {

 return TlsGetValue(m_manager->m_tls);

 }

 void SetValue(void* value)

 {

 TlsSetValue(m_manager->m_tls, value);

 }

3/3

 TlsManager* m_manager = nullptr;

};

The idea here is that a TlsManager is the object that manages access to a TLS slot. You call
Acquire to start using the TLS slot (allocating it on demand), and you can use that slot until
you call Release. When the last consumer of a slot calls Release, the slot is freed.

Instead of talking directly to the TlsManager, you use a TlsUsage, which is an RAII type that
deals with the acquire/release protocol for you.

To make the TlsManager thread-safe, we can add locks:

struct TlsManager

{

 DWORD m_count = 0;

 DWORD m_tls = TLS_OUT_OF_INDEXES;

 std::mutex m_mutex;

 void Acquire()

 {

 auto lock = std::unique_lock(m_mutex);

 if (++m_count == 1) {

 m_tls = TlsAlloc();

 THROW_LAST_ERROR_IF(m_tls == TLS_OUT_OF_INDEXES);

 }

 }

 void Release()

 {

 auto lock = std::unique_lock(m_mutex);

 if (--m_count == 0) {

 TlsFree(std::exchange(m_tls, TLS_OUT_OF_INDEXES));

 }

 }

};

Now, in practice, this might end up being efficient enough if TlsUsage objects are not
frequently created and destroyed. But you might be in a case where your program is
constantly creating and destroying Widget objects, and each Widget needs a TlsUsage. That
lock might end up being a bottleneck. We’ll try to address this next time.

Update: TlsUsage move constructor and assignment fixed.

