Writing a remove_all_pointers type trait, part 1

=. devblogs.microsoft.com/oldnewthing/20240627-00

June 27, 2024

Raymond Chen

There is a std: :remove_pointer type trait helper. If you give it a pointer type T+, its type
member type is T. Otherwise, the type member type is just the template type unchanged.

But what if you want to remove all pointers? For example, remove all
pointers<int*const*volatile*>::type should be int.

You can define this as a recursive operation. In pseudo-code:

template<typename T>
auto remove_all_pointers

{
if (std::is_pointer_v<T>) {
return remove_all_pointers<
std::remove_pointer_t<T>
>
} else {
return T,
}
}

One way to express conditional evaluation in template metaprogramming is to use
std::conditional<a, b, c>::type, whichisbifais trueandiscifais false.

Therefore, your first attempt might be to write it as a one-liner built out of std: :conditional.

template<typename T>
using remove_all_pointers_t =
std::conditional_t<
std::is_pointer_v<T>,
remove_all pointers_t<
std::remove_pointer_t<T>>, ;
T>;

Okay, this doesn’t work because of the recursive reference to remove all pointers t
before it has completed its declaration. We can sidestep this by using a struct.

1/5

https://devblogs.microsoft.com/oldnewthing/20240627-00/?p=109940

template<typename T>

struct remove_all_pointers

{

using type = std::conditional_t<
std::is_pointer_v<T>,
typename remove_all pointers<
std::remove_pointer_t<T>>::type,

T>;

}

This compiles, but you get an error when you try to use it:

2/5

using test = remove_all_pointers<int*const*volatile*>::type;

// gcc
In instantiation of 'struct remove_all_pointers<int>':
recursively required from 'struct remove_all_pointers<int* const* volatile>'
required from 'struct remove_all pointers<int* const* volatile*>'
required from here
error: invalid use of incomplete type 'struct remove_all pointers<int>'
| using type = std::conditional_t<
| Ne~~
note: definition of 'struct remove_all_pointers<int>' is not complete until the
closing brace

| struct remove_all pointers
| N

// clang
error: no type named 'type' in 'remove_all pointers<int>'
| typename remove_all_pointers<

N~

I
| std::remove_pointer_t<T>>::type,
|

note: in instantiation of template class 'remove_all_pointers<int>' requested here

| typename remove_all pointers<

| N
note: in instantiation of template class 'remove_all pointers<int *const>' requested
here
note: in instantiation of template class 'remove_all_pointers<int *const *volatile>'
requested here
note: in instantiation of template class 'remove_all pointers<int *const *volatile
*>' requested here

| using test = remove_all pointers<int*const*volatile*>::type;
| N

// msvc

error C2146: syntax error: missing '>' before identifier 'type'

note: the template instantiation context (the oldest one first) is

note: see reference to class template instantiation 'remove_all pointers<int *const
*volatile *>' being compiled

note: see reference to class template instantiation 'remove_all_pointers<int *const
*volatile >' being compiled

note: see reference to class template instantiation 'remove_all_pointers<int *const
>' being compiled

note: see reference to class template instantiation 'remove_all_pointers<int>' being
compiled

Okay, maybe we were too ambitious.

All the error messages show that the template was able to recurse and strip away pointers,
but then it ran into a problem when it reached the base case. Let’s look at that base case:

3/5

struct remove_all_pointers<int>

{
using type = std::conditional_t<
std::is_pointer_v<int>,
remove_all_pointers<
std::remove_pointer_t<int>>::type,
int>;
}

After substituting std: :remove_pointer_t<int> = int, we get

struct remove_all pointers<int>

{
using type = std::conditional_t<
std::is_pointer_v<int>,
remove_all pointers<int>::type,
int>;
+i

Now we see the problem. The definition of remove_all_pointers<int>::type is dependent
on itself.

The catch here is that std: :conditional is not a short-circuiting operator. How can it be?
It's a template!

In order to instantiate a template, the compiler first evaluates the template parameters, and
then it looks at the template expansion that results. The compiler doesn’t “look ahead” and
say, “Oh, | can tell that the template expansion never uses its second parameter, so | will skip
the evaluation of the second parameter.™

One way to solve this problem is to move the expansion of the two parameters to a partial
specialization. That way, only the pointer cases invoke the template recursively.

template<typename T,
bool = std::is_pointer_v<T>>
struct remove_all pointers;

template<typename T>
struct remove_all pointers<T, false>
{
using type = T;
+

template<typename T>
struct remove_all pointers<T, true>
{
using type = typename remove_all_pointers<
std::remove_pointer_t<T>>::type;

1

4/5

We add a hidden second template parameter which defaults to std: :is_pointer_v<T>. We
then partially specialize the template on that second template parameter: If it's false (T is
not a pointer), then the type is T itself, which provides our base case (no longer accidentally
referring to itself). If it's true (T is a pointer), then the type is calculated recursively after
stripping away one layer of indirection.

template<typename T>
using remove_all _pointers_t =
typename remove_all pointers<T>::type;

static_assert(std::is_same_v<
remove_all pointers_t<int*const*volatile*>,
int>);

As a small tuning step, we can fold the base case into the initial definition, so that only the
recursive case is a partial specialization.

template<typename T,
bool = std::is_pointer_v<T>>
struct remove_all pointers

{
using type = T;
}

template<typename T>
struct remove_all_pointers<T, true>

{
using type = typename remove_all pointers<
std::remove_pointer_t<T>>::type;
+i
Are we done?
No, not yet.

We'll continue next time.

" Indeed, the “I evaluate all the parameters even if they aren’t used” behavior is one of the
things that SFINAE relies on!

5/5

