
1/11

November 8, 2024

The case of a program that crashed on its first
instruction

devblogs.microsoft.com/oldnewthing/20241108-00

A customer was baffled by crash reports that indicated that their program was failing on its
very first instruction.

I opened one of the crash dumps, and it was so weird, the debugger couldn’t even say what
went wrong.

ERROR: Unable to find system thread FFFFFFFF
ERROR: The thread being debugged has either exited or cannot be accessed
ERROR: Many commands will not work properly
This dump file has an exception of interest stored in it.
The stored exception information can be accessed via .ecxr.
ERROR: Exception C0000005 occurred on unknown thread FFFFFFFF
(61c.ffffffff): Access violation - code c0000005 (first/second chance not available)
0:???> r
WARNING: The debugger does not have a current process or thread
WARNING: Many commands will not work
 ^ Illegal thread error in 'r'
0:???> .ecxr
WARNING: The debugger does not have a current process or thread
WARNING: Many commands will not work
0:???>

Let’s see what threads we have.

0:???> ~
WARNING: The debugger does not have a current process or thread
WARNING: Many commands will not work
 0 Id: 61c.12b4 Suspend: 1 Teb: 000000c7`9604d000 Unfrozen
 1 Id: 61c.22d4 Suspend: 1 Teb: 000000c7`9604f000 Unfrozen
 2 Id: 61c.1ab0 Suspend: 1 Teb: 000000c7`96051000 Unfrozen
 3 Id: 61c.3308 Suspend: 1 Teb: 000000c7`96053000 Unfrozen
 4 Id: 61c.2af0 Suspend: 1 Teb: 000000c7`96055000 Unfrozen
 5 Id: 61c.2054 Suspend: 1 Teb: 000000c7`96059000 Unfrozen
0:???>

https://devblogs.microsoft.com/oldnewthing/20241108-00/?p=110490

2/11

I wonder what they are doing.

We’ll switch to each thread just to see what instruction they are at

0:???> ~0s
WARNING: The debugger does not have a current process or thread
WARNING: Many commands will not work
ntdll!RtlUserThreadStart:
00007ffa`bb16df50 4883ec78 sub rsp,78h
0:000> ~*s
 ^ Illegal thread error in '~*s'
0:000> ~1s
00000293`42074058 66894340 mov word ptr [rbx+40h],ax
ds:00007ff6`e4600040=1f0e
0:001> ~2s
ntdll!ZwWaitForWorkViaWorkerFactory+0x14:
00007ffa`bb1b29c4 c3 ret
0:002> ~3s
ntdll!ZwWaitForWorkViaWorkerFactory+0x14:
00007ffa`bb1b29c4 c3 ret
0:003> ~4s
ntdll!ZwWaitForWorkViaWorkerFactory+0x14:
00007ffa`bb1b29c4 c3 ret
0:004> ~5s
ntdll!ZwDelayExecution+0x14:
00007ffa`bb1af3f4 c3 ret

The ostensible reason for the crash was an invalid write instruction, and only thread 1 is
doing a write. Let’s take a closer look at what it’s trying to write to.

3/11

0:001> !address @rbx

Usage: Image
Base Address: 00007ff6`e4600000
End Address: 00007ff6`e4601000
Region Size: 00000000`00001000 (4.000 kB)
State: 00001000 MEM_COMMIT
Protect: 00000002 PAGE_READONLY
Type: 01000000 MEM_IMAGE
Allocation Base: 00007ff6`e4600000
Allocation Protect: 00000080 PAGE_EXECUTE_WRITECOPY
Image Path: C:\Program Files\Contoso\ContosoDeluxe.exe
Module Name: ContosoDeluxe
Loaded Image Name: ContosoDeluxe.exe
Mapped Image Name: C:\Program Files\Contoso\ContosoDeluxe.exe
More info: lmv m ContosoDeluxe
More info: !lmi ContosoDeluxe
More info: ln 0x7ff6e4600000
More info: !dh 0x7ff6e4600000

Content source: 2 (mapped), length: 400
0:001> ln @rbx
(00000000`00000000) ContosoDeluxe!__ImageBase

Okay, so we are writing to the mapped image header for ContosoDeluxe itself. This is a read-
only page (PAGE_READ ONLY), which is why we take a write access violation.

In fact, we’re writing into the image header, which is not something anybody normally does.
This looks quite suspicious.

If we ask for stacks, we get this:

4/11

0:001> ~*k

 0 Id: 61c.12b4 Suspend: 1 Teb: 000000c7`9604d000 Unfrozen
Child-SP RetAddr Call Site
000000c7`962ffd48 00000000`00000000 ntdll!RtlUserThreadStart

 1 Id: 61c.22d4 Suspend: 1 Teb: 000000c7`9604f000 Unfrozen
Child-SP RetAddr Call Site
000000c7`963ff900 00007ff6`e4600000 0x00000293`42074058

 2 Id: 61c.1ab0 Suspend: 1 Teb: 000000c7`96051000 Unfrozen
Child-SP RetAddr Call Site
000000c7`964ff718 00007ffa`bb145a0e ntdll!ZwWaitForWorkViaWorkerFactory+0x14
000000c7`964ff720 00007ffa`ba25244d ntdll!TppWorkerThread+0x2ee
000000c7`964ffa00 00007ffa`bb16df78 kernel32!BaseThreadInitThunk+0x1d
000000c7`964ffa30 00000000`00000000 ntdll!RtlUserThreadStart+0x28

 3 Id: 61c.3308 Suspend: 1 Teb: 000000c7`96053000 Unfrozen
Child-SP RetAddr Call Site
000000c7`965ff6a8 00007ffa`bb145a0e ntdll!ZwWaitForWorkViaWorkerFactory+0x14
000000c7`965ff6b0 00007ffa`ba25244d ntdll!TppWorkerThread+0x2ee
000000c7`965ff990 00007ffa`bb16df78 kernel32!BaseThreadInitThunk+0x1d
000000c7`965ff9c0 00000000`00000000 ntdll!RtlUserThreadStart+0x28

 4 Id: 61c.2af0 Suspend: 1 Teb: 000000c7`96055000 Unfrozen
Child-SP RetAddr Call Site
000000c7`966ffad8 00007ffa`bb145a0e ntdll!ZwWaitForWorkViaWorkerFactory+0x14
000000c7`966ffae0 00007ffa`ba25244d ntdll!TppWorkerThread+0x2ee
000000c7`966ffdc0 00007ffa`bb16df78 kernel32!BaseThreadInitThunk+0x1d
000000c7`966ffdf0 00000000`00000000 ntdll!RtlUserThreadStart+0x28

 5 Id: 61c.2054 Suspend: 1 Teb: 000000c7`96059000 Unfrozen
Child-SP RetAddr Call Site
000000c7`968ffcb8 00007ffa`bb165833 ntdll!ZwDelayExecution+0x14
000000c7`968ffcc0 00007ffa`b88f9fcd ntdll!RtlDelayExecution+0x43
000000c7`968ffcf0 00000293`420a1efd KERNELBASE!SleepEx+0x7d
000000c7`968ffd70 00000000`00000000 0x00000293`420a1efd

Thread 1 is the suspicious thread that committed the access violation.

There’s another suspicious thread, thread 5, which is in a SleepEx call called from the same
suspicious source 0x00000293`420xxxxx. This other thread is probably waiting for something
to happen, so let’s take a look at it.

First, let’s see what kind of memory we are executing from.

5/11

0:001> !address 00000293`420a1ee0

Usage: <unknown>
Base Address: 00000293`420a0000
End Address: 00000293`420ca000
Region Size: 00000000`0002a000 (168.000 kB)
State: 00001000 MEM_COMMIT
Protect: 00000040 PAGE_EXECUTE_READWRITE
Type: 00020000 MEM_PRIVATE
Allocation Base: 00000293`420a0000
Allocation Protect: 00000040 PAGE_EXECUTE_READWRITE

Yikes, PAGE_EXECUTE_READ WRITE. That’s not a good sign. That smells like malicious code
injection, because it is highly unusual for normal code to be read-write. But let’s hold out
hope that maybe there’s a legitimate explanation for all of this, and it’s just a matter of finding
it.

Let’s see what code we are executing.

00000293`420a1ed9 add rsp,30h
00000293`420a1edd pop rdi
00000293`420a1ede ret
00000293`420a1edf int 3
00000293`420a1ee0 push rbx
00000293`420a1ee2 sub rsp,20h
00000293`420a1ee6 call 00000293`420a13e0
00000293`420a1eeb mov qword ptr [00000293`420c0c78],rax
00000293`420a1ef2 mov ecx,3E8h
00000293`420a1ef7 call qword ptr [00000293`420b4028]
 ^^^^^^^^ YOU ARE HERE
00000293`420a1efd call 00000293`420a13e0 // do it again
00000293`420a1f02 mov rdx,rax
00000293`420a1f05 mov rbx,rax
00000293`420a1f08 call 00000293`420a19d0
00000293`420a1f0d test eax,eax
00000293`420a1f0f jne 00000293`420a1f22
00000293`420a1f11 mov rax,qword ptr [00000293`420c0c78]
00000293`420a1f18 mov qword ptr [00000293`420c0c78],rbx
00000293`420a1f1f mov rbx,rax
00000293`420a1f22 mov rcx,rbx
00000293`420a1f25 call 00000293`420a17f0
00000293`420a1f2a jmp 00000293`420a1ef2

The first few instructions, up to the int 3 appear to be the end of the previous function, so
we can start our analysis at the push rbx.

6/11

 push rbx ; preserve register
 sub rsp, 20h ; stack frame
 call 00000293`420a13e0 ; mystery function 1
 mov [00000293`420c0c78],rax ; save answer in global

00000293`420a1ef2:
 mov ecx, 3E8h ; decimal 1000
 call [00000293`420b4028] ; mystery function 2
 ^^^^^^^^ YOU ARE HERE

 call 00000293`420a13e0 ; mystery function 1
 mov rdx, rax ; return value becomes param1
 mov rbx, rax ; save return value in rbx
 call 00000293`420a19d0 ; mystery function 3
 test eax,eax ; Q: did it succeed?
 jne 00000293`420a1f22 ; N: Skip
 mov rax, [00000293`420c0c78] ; get previous value
 mov [00000293`420c0c78], rbx ; replace with new value
 mov rbx, rax ; save previous value in rbx

00000293`420a1f22:
 mov rcx, rbx ; rcx = updated value in rbx
 call 00000293`420a17f0 ; mystery function 3
 jmp 00000293`420a1ef2 ; loop back forever

One thing that’s apparent here is that this thread never exits. It’s an infinite loop.

First, let’s see if we can identify the mystery functions.

The easiest is probably mystery function 2, since it looks like a call to an imported function.

0:001> dps 00000293`420b4028 L1
00000293`420b4028 00007ffa`ba258370 kernel32!SleepStub

Aha, mystery function 2 is Sleep, and the call is a Sleep(1000). Which we sort of knew from
the stack trace but it’s nice to see confirmation.

But let’s look around near that address, since that may be part of a larger table of function
pointers.

00000293`420b4000 00007ffa`baa59810 advapi32!RegCloseKeyStub
00000293`420b4008 00007ffa`baa596e0 advapi32!RegQueryInfoKeyWStub
00000293`420b4010 00007ffa`baa595a0 advapi32!RegOpenKeyExWStub
00000293`420b4018 00007ffa`baa5ab30 advapi32!RegEnumValueWStub
00000293`420b4020 00000000`00000000
00000293`420b4028 00007ffa`ba258370 kernel32!SleepStub
00000293`420b4030 00007ffa`ba250cc0 kernel32!GetLastErrorStub
00000293`420b4038 00007ffa`ba266b60 kernel32!lstrcatW
00000293`420b4040 00007ffa`ba25ff00 kernel32!CloseHandle
00000293`420b4048 00007ffa`ba254380 kernel32!CreateThreadStub

https://devblogs.microsoft.com/oldnewthing/20230911-00/?p=108749

7/11

Bingo, this appears to be a table of imported function pointers.

Mystery function 1 seems to be called to start things off, and then again in a loop, so it
seems kind of important. Let’s see what it is.

00000293`420a13e0 mov qword ptr [rsp+8],rbx
00000293`420a13e5 mov qword ptr [rsp+10h],rsi
00000293`420a13ea mov qword ptr [rsp+18h],rdi
00000293`420a13ef push rbp
00000293`420a13f0 mov rbp,rsp
00000293`420a13f3 sub rsp,80h
00000293`420a13fa mov rax,qword ptr [00000293`420bf010]
00000293`420a1401 xor rax,rsp
00000293`420a1404 mov qword ptr [rbp-8],rax
00000293`420a1408 mov ecx,40h
00000293`420a140d call 00000293`420a8478 // mystery function 3

This looks like a typical C function, not hand-coded assembly. After saving non-volatile
registers, it builds a stack frame, and the mov rax, [global] followed by a xor rax, rsp
looks a lot like a /GS stack canary.

So at least it’s nice that this rogue code was compiled with stack buffer overflow protection.
Can’t be too careful.

Let’s look at mystery function 3.

8/11

00000293`420a8478
 push rbx
 sub rsp, 20h
 mov rbx, rcx
 jmp 00000293`420a8492

00000293`420a8483
 mov rcx, rbx
 call 00000293`420aad50
 test eax, eax
 je 00000293`420a84a2
 mov rcx, rbx

00000293`420a8492
 call 00000293`420aadb4
 test rax, rax
 je 00000293`420a8483
 add rsp, 20h
 pop rbx
 ret

00000293`420a84a2
 cmp rbx, 0FFFFFFFFFFFFFFFFh
 je 00000293`420a84ae

 call 00000293`420a8c80
 int 3

00000293`420a84ae
 call 00000293`420a8ca0
 int 3

00000293`420a84b4
 jmp 00000293`420a8478

This reverse-compiles to

uint64_t something(uint64_t value)
{
 uint64_t p;
 while (uint64_t p = func00000293420aadb4(value); !p) {
 if (!func00000293420aad50(value)) {
 if (value == ~0ULL) {
 func00000293420a8c80();
 } else {
 func00000293420a8c80();
 }
 // NOTREACHED
 }
 }
 return p;
}

9/11

This seems to call a function at func00000293420aadb4 repeatedly.

00000293`420aadb4 jmp 00000293`420acf8c

This appears to be an incremental linking thunk. So whatever this is, it looks like it was
compiled in debug mode.

00000293`420acf8c
 push rbx
 sub rsp, 20h
 mov rbx,rcx
 cmp rcx, 0FFFFFFFFFFFFFFE0h
 ja 00000293`420acfd7
 test rcx, rcx
 mov eax, 1
 cmove rbx, rax
 jmp 00000293`420acfbe

00000293`420acfa9
 call 00000293`420b02c0
 test eax, eax
 je 00000293`420acfd7
 mov rcx, rbx
 call 00000293`420aad50
 test eax, eax
 je 00000293`420acfd7

00000293`420acfbe
 mov rcx, [00000293`420c07f8]
 mov r8, rbx
 xor edx, edx
 call [00000293`420b4298]
 test rax, rax
 je 00000293`420acfa9
 jmp 00000293`420acfe4

00000293`420acfd7
 call 00000293`420ac71c
 mov [rax], 0Ch
 xor eax, eax
 add rsp, 20h
 pop rbx
 ret

The initial comparison against 0xFFFFFFFF`FFFFFFFE makes me suspect that this is
malloc() or operator new because those functions begin with a check for an excessive
allocation size, to avoid integer overflow.

And indeed, that’s basically what this function is, as revealed by the indirect function call:

10/11

0:005> dps 00000293`420b4298 L1
00000293`420b4298 00007ffa`bb14cca0 ntdll!RtlAllocateHeap

Okay, so we found malloc() or operator new.

This will help us understand mystery function 1 a lot better.

00000293`420a13e0
 mov [rsp+8], rbx
 mov [rsp+10h], rsi
 mov [rsp+18h], rdi
 push rbp
 mov rbp, rsp
 sub rsp, 80h
 mov rax, [00000293`420bf010]
 xor rax, rsp
 mov [rbp-8], rax ; /GS canary
 mov ecx, 40h
 call 00000293`420a8478 ; allocate 64 bytes
 xorps xmm0, xmm0
 mov ecx, 18h
 mov rdi,rax ; save first allocation
 movups [rax],xmm0 ; zero out first allocation
 movups [rax+10h],xmm0
 movups [rax+20h],xmm0
 movups [rax+30h],xmm0
 call 00000293`420a8478 ; allocate 24 bytes
 xor esi,esi
 mov ecx, 80h
 mov rbx,rax ; save second allocation
 mov [rax+0Ch], rsi ; zero out second allocation
 mov [rax+14h], esi
 mov [rax], esi
 mov [rax+4], 10h
 mov [rax+8], 1
 call 00000293`420a84b4 ; mystery function 4
 mov [rbx+10h], rax ; save result
 lea ecx, [rsi+10h] ; ecx = 0x10
 mov [rdi], rbx
 call 00000293`420a8478 ; third allocation
 lea ecx, [rsi+40h] ; ecx = 0x40
 mov rbx, rax
 mov [rax+8], rsi ; initialize third allocation
 mov [rax], esi
 mov [rax+4], 10h
 call 00000293`420a84b4 ; mystery function 4
 mov [rbx+8], rax
 lea ecx, [rsi+18h] ; ecx = 0x18

Okay, so this function starts by allocating many memory blocks and initializing them.

Let’s skip ahead to where it finally does something interesting.

11/11

 lea rdx, [00000293`420bba90] ; LR"(SOFTWARE\systemconfig)"
 lea rax, [rbp-50h]
 mov [rdi+38h], rbx
 mov r9d, 20119h ; KEY_READ
 mov [rsp+20h], rax
 xor r8d, r8d
 mov rcx,0FFFFFFFF80000002h ; HKEY_LOCAL_MACHINE
 call qword ptr [00000293`420b4010] ; RegOpenKeyExW
 test eax, eax

A dps 00000293`420b4010 reveals that the function pointer is Reg Open Key ExW, so the entire
function call must have been

RegOpenKeyExW(HKEY_LOCAL_MACHINE,
 L"SOFTWARE\\systemconfig", 0, KEY_READ, &key);

Further disassembly shows that if the code successfully opens the key, it tries to read some
values from it. My guess is that system config is where the code stores its state.

Okay, so maybe I can speed things up by dumping strings and seeing if there’s anything that
will give me a clue about the identity of this code. Recall that the !address command told us
that the memory block was

0:001> !address 00000293`420a1ee0
Base Address: 00000293`420a0000
End Address: 00000293`420ca000

We’ll ask the !mex debugger extension to find any strings in the memory block.

0:005> !mex.strings 00000293`420a0000 00000293`420ca000
...
00000293420bbd10 system
00000293420bc1d4 H:\rootkit\r77-rootkit-master\vs\x64\Release\r77-x64.pdb

Okay, so I guess it’s malware, or at least self-identifies as a rootkit. And, hey, an Internet
search for this rootkit name shows that its source code is public.

The good news for the developer is that the problem is not their fault. The bad news is that
since the crash dumps are submitted anonymously, they have no way of contacting the users
to tell them that they have been infected with malware.

https://www.microsoft.com/en-us/download/details.aspx?id=53304

