
1/2

November 11, 2024

Debugger breakpoints are usually implemented by
patching the in-memory copy of the code

devblogs.microsoft.com/oldnewthing/20241111-00

In practice, when you set a code breakpoint in the debugger, the debugger replaces the
instruction at that location with a breakpoint instruction.¹ When execution reaches that
instruction, it will encounter the breakpoint instruction and break into the debugger.

When the program has been stopped in the debugger, what happens next can vary from
debugger to debugger. Some debuggers remove all their breakpoints when the program
stops, and then restore the breakpoints when the program resumes. Other debuggers leave
the breakpoints in place even when the program is stopped.

In both cases, if you inspect the memory in the debugger, you will see the original unpatched
code. In the first case, it’s because the code really is unpatched; the breakpoint instructions
are removed. In the second case, it’s because the debugger is lying to you and showing you
the original bytes even though they aren’t what are in memory right now.

Most of the time, this deception is insignificant. Everything looks like no patching has
occurred.

But sometimes you will notice.

One case where you will notice is if the program tries to read from its own code bytes. In that
case, it will see the patched instructions.

Another case is where you mistakenly set a code breakpoint on data. The debugger replace
the “instruction” at the data you specified with a breakpoint instruction, and then resumes
execution. Your code then tries to read from that data, and instead of reading the original
data, it reads the breakpoint instruction. What happens next depends on what the program
tries to do with that data, but it’s usually not good.

So take care when you set your code breakpoints. Make sure they really are on code.

https://devblogs.microsoft.com/oldnewthing/20241111-00/?p=110503


2/2

¹ The encoding of the breakpoint instruction on x86 is the single byte 0xCC.


