
1/3

November 14, 2024

Solving the puzzle of trying to put an object into a
std::optional

devblogs.microsoft.com/oldnewthing/20241114-00

Last time, we investigated the puzzle of why the compiler wouldn’t let us put an object into a
std::optional. It came down to the fact that the object is not copy-constructible, move-
constructible, copy-assignable, or move-assignable, so there’s no way to put the temporary
object into the std::optional.

What we have to do is construct the object in place inside the std::optional. And the C++
standard library term for “construct an object inside a container” is “emplace”.

struct Doodad
{
 Doodad();
 ~Doodad();
 std::unique_ptr<DoodadStuff> m_stuff;
};

struct Widget
{
 std::optional<Doodad> m_doodad;

 Widget()
 {
 if (doodads_enabled()) {
 m_doodad.emplace();
 }
 }
};

The parameters to emplace are whatever parameters you would have passed to the Doodad
constructor. In our case, we wanted the default constructor, so that means that we pass
nothing to emplace().

https://devblogs.microsoft.com/oldnewthing/20241114-00/?p=110521
https://devblogs.microsoft.com/oldnewthing/20241113-00/?p=110516

2/3

I may as well take this time to review the various options for placing a value into a
std::optional, because they are subtly different. For the purpose of this discussion, the T
object being held inside a std::optional<T> will be called its “value”.

Previous state of optional<T>

Empty Not empty

o.reset(); Nothing happens Destruct the existing T

o.emplace(args...); Construct a T from
args...

Destruct the existing T and
 construct a new T from args...

 same as o.reset();
o.emplace(args...);

o = v; Construct a T from v
 same as o.emplace(v)

Assign v to the existing value
 same as *o = v;

o = std::nullopt; Nothing happens Destruct the existing T

Note that the o = v; might construct the object, or it might assign the object, depending on
the prior state of the std::optional. That’s why the requirements for the assignment
operator require both constructibility and assignability from the right hand side. If you already
know whether the object is empty or nonempty, you avoid the compiler having to generate
code for both possibilities by going straight to emplace() method (if you know that it is
empty), or going straight to T‘s assignment operator *o = v; (if you know that it is
nonempty). Note, though, that the penalty for guessing wrong varies depending on the path
you take.

Previous state of optional<T>

Empty Not empty

o.emplace(v); Construct a T from args... Destruct the existing T and
 construct a new T from v...

o.value() = v; std::bad_optional_access exception Assign v to the existing value

*o = v; Undefined behavior Assign v to the existing value

If you try to emplace thinking that the optional is empty, but it is in fact nonempty, then
instead of assigning the value, you destruct the old value and then construct a new one. This
is a subtle difference, but it is significant because it runs the object’s destructor and then re-
runs the object’s constructor.

3/3

On the other hand, if you use o.value() = v; to assign a value when the optional is empty,
you get a runtime exception. And even worse, if you use *o = v; to assign a value when the
optional is empty, you get undefined behavior, and that’s super-bad.

But wait, what if your type is not copyable, movable, or constructible? For example, maybe
instead of a constructor, it has a factory method. How can you put one of these objects into a
std::optional? We’ll look at that next time.

Bonus chatter: In the case where you emplace() into a nonempty optional, the old value is
destructed, and the new value is constructed. If the construction of the new value throws an
exception, then the optional stays empty. This is another subtle difference from using the
assignment operator, because a failed assignment does not destruct the optional’s value.

Bonus bonus chatter: You might think you can move a value out of an optional by doing

auto v = std::move(v.value());

but while this does move the value’s contents, the optional remains nonempty, with a moved-
from value inside it. Even move-constructing an optional from an optional does not empty the
source.

std::optional<T> p = std::move(o);
// o is nonempty and contains a moved-from value

If you want to empty the optional, you can exchange it.

std::optional<T> p = std::exchange(o, std::nullopt);

You can equivalently write

std::optional<T> p = std::exchange(o, {});

but for some reason, msvc and gcc fail to optimize out the temporary empty
std::optional<T>{}, so stick with std::nullopt.

Bonus bonus bonus chatter: If you want to construct a std::optional with an object
already inside it, you can use in_place with constructor arguments.

// constructs the Doodad as if by Doodad(x, y, z)
std::optional<Doodad> o(std::in_place, x, y, z);

