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Assessing the attack complexity of a race condition
security vulnerability

devblogs.microsoft.com/oldnewthing/20241129-00

When assessing the attack complexity of a race condition security vulnerability, you have to
look not only at how small the race window is but also how easy it is to hit the window.

Consider the following time-of-check-to-time-of-use (TOCTTOU) race condition. Suppose
this code runs in kernel mode, and receives an InfoStruct from user mode that specifies
where to put the information.

struct InfoStruct 
{ 
   uint32_t size; 
   char* buffer; 
};

void GetInfo(InfoStruct* info) 
{ 
   __try 
   { 
       // If the buffer does not point to user mode, then fail. 
       if (!ValidateUserModeBuffer(info->buffer, info->size)) { 
           return ERROR_INVALID_PARAMETER; 
       } 

       FillBufferWithData(info->buffer, info->size); 
       return ERROR_SUCCESS; 
   } 
   __except (⟦ invalid user-mode pointer provided ⟧) 
   { 
       return ERROR_INVALID_PARAMETER; 
   } 
} 

The race condition occurs if the user-mode buffer pointer changes after it is validated and
before it is used.¹

https://devblogs.microsoft.com/oldnewthing/20241129-00/?p=110588
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An attacker exploits this race condition by creating a second thread that modifies the Info ‐
Struct after it has been validated but before it has been used.

On the other hand, consider this function, which returns two results in a user-provided buffer.
The first result goes at the start of the buffer, and the second result goes after it. The size of
the information is dynamic, so we tell the caller where we put the second result.

struct InfoStruct 
{ 
   uint32_t size; // in 
   char* buffer; // in 
   char* result2; // out 
};

void GetInfo(InfoStruct* info) 
{ 
   __try 
   { 
       InfoStruct captured = *info; 

       // If the buffer does not point to user mode, then fail. 
       if (!ValidateUserModeBuffer(captured.buffer, captured.size)) { 
           return ERROR_INVALID_PARAMETER; 
       } 

       // Copy the first result. 
       uint32_t actual; 
       if (!FillBufferWithResult1(captured.buffer, captured.size, &actual)) { 
           return ERROR_INSUFFICIENT_BUFFER; 
       } 

       // Copy the second result. 
       info->result2 = info->result1 + actual; 
       uint32_t remaining = captured.size - actual; 
       if (!FillBufferWithResult2(info->result2, remaining, &actual)) { 
           return ERROR_INSUFFICIENT_BUFFER; 
       } 

       return ERROR_SUCCESS; 
   } 
   __except (⟦ invalid user-mode pointer provided ⟧) 
   { 
       return ERROR_INVALID_PARAMETER; 
   } 
} 

This code is careful to capture the Info Struct from user mode, but it incorrectly assumes
that the value written to info->result2 at the line info->result2 = info->result1 +
actual; will be the same value read back when it is passed to Fill Buffer With Result2.²
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The info points to user mode, and an attacker exploits this race condition by creating a
second thread that modifies the InfoStruct‘s result2 memory after its value has been set
and before it is used.

Both of these race conditions involve a user-mode attacker modifying user-mode member
during a small race window. Do they have the same attack complexity?

No. One of them is easy to exploit, and the other is hard to exploit.

Superficially, they look like they have similar attack profiles.

Timing of write First vulnerability Second vulnerability

Early Rejected by validation: Fail Overwritten before being used: Fail

On time Exploit Exploit

Late No effect: Fail No effect: Fail

However, this assessment assumes that the attacker is attempting only one malicious write.
But what if they try multiple writes?

In the first vulnerability, an early malicious write poisons the scenario because Validate ‐
User Mode Buffer reads a malicious value, which it rejects as invalid, so the attack fails. The
exploitability of the first vulnerability is low because the first write must occur inside the
narrow window.

In the second vulnerability, an early malicious write leaves the scenario still vulnerable. The
kernel will just overwrite the malicious value at the line info->result2 = info->result1 +
actual;, and the attacker gets another chance to overwrite the value before the kernel reads
back from it on the next line.

So the attacker need only set up another thread that is in a tight loop:

while (true) { 
   info->result2 = malicious_value; 
} 

and let that thread run while calling Get Info from another thread. There will be a huge
number of premature writes, which have no effect, and then the attack window opens, and
you are already in a tight write loop, so the odds are not too bad that your malicious write will
occur during the small race window.
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By analogy, consider the case of trying to buy tickets to a popular event. You might try calling
the ticket line repeatedly, hoping to call after the tickets go on sale but before they sell out.
One possibly policy of the ticket agency is that if you call before the tickets go on sale, your
phone number gets put on a list of “malicious callers”, and they won’t sell you tickets to that
event. In that case, the cost of a premature call is very high, and your chances of success
relies entirely on how well you can predict when the tickets go on sale. Another possible
policy is that the ticket agency just says, “Sorry, they’re not on sale yet”, but you can still call
again. In this case, the cost of a premature call is very low, and you may as well just put the
ticket agency on speed dial and mash it as fast as you can.

¹ The correct behavior is to capture the values from user mode into kernel mode, and then
operate exclusively on the captured values. The captured values cannot be manipulated
from user mode, so the values you validate are also the values that you use.

² The correct behavior is not to read back the value written to user mode but rather
remember the address in a place the attacker cannot modify, and use that remembered
address.

char* result2 = info->result1 + actual; 
info->result2 = result2; 
if (!FillBufferWithResult2(result2, remaining, &actual)) { 


