
1/5

Linux based inter-process code injection
without ptrace(2)

blog.gdssecurity.com/labs/2017/9/5/linux-based-inter-process-code-injection-without-ptrace2.html

Tuesday, September 5, 2017 at 5:01AM

Using the default permission settings found in most major Linux distributions it is possible

for a user to gain code injection in a process, without using ptrace. Since no syscalls are

required using this method, it is possible to accomplish the code injection using a language as

simple and ubiquitous as Bash. This allows execution of arbitrary native code, when only a

standard Bash shell and coreutils are available. Using this technique, we will show that the

noexec mount flag can be bypassed by crafting a payload which will execute a binary from

memory.

The /proc filesystem on Linux offers introspection of the running of the Linux system. Each

process has its own directory in the filesystem, which contains details about the process and

its internals. Two pseudo files of note in this directory are maps and mem . The maps file

contains a map of all the memory regions allocated to the binary and all of the included

dynamic libraries. This information is now relatively sensitive as the offsets to each library

location are randomised by ASLR. Secondly, the mem file provides a sparse mapping of the

full memory space used by the process. Combined with the offsets obtained from the maps

file, the mem file can be used to read from and write directly into the memory space of a

process. If the offsets are wrong, or the file is read sequentially from the start, a read/write

error will be returned, because this is the same as reading unallocated memory, which is

inaccessible.

The read/write permissions on the files in these directories are determined by the

ptrace_scope file in /proc/sys/kernel/yama , assuming no other restrictive access

controls are in place (such as SELinux or AppArmor). The Linux kernel offers documentation

for the different values this setting can be set to. For the purposes of this injection, there are

two pairs of settings. The lower security settings, 0 and 1, allow either any process under the

same uid, or just the parent process, to write to a processes /proc/${PID}/mem file,

respectively. Either of these settings will allow for code injection. The more secure settings, 2

and 3, restrict writing to admin-only, or completely block access respectively. Most major

operating systems were found to be configured with ‘1’ by default, allowing only the parent of

a process to write into its /proc/${PID}/mem file.

This code injection method utilises these files, and the fact that the stack of a process is

stored inside a standard memory region. This can be seen by reading the maps file for a

process:

$ grep stack /proc/self/maps
7ffd3574b000-7ffd3576c000 rw-p 00000000 00:00 0 [stack]

https://blog.gdssecurity.com/labs/2017/9/5/linux-based-inter-process-code-injection-without-ptrace2.html

2/5

Among other things, the stack contains the return address (on architectures that do not use a

‘link register’ to store the return address, such as ARM), so a function knows where to

continue execution when it has completed. Often, in attacks such as buffer overflows, the

stack is overwritten, and the technique known as ROP is used to assert control over the

targeted process. This technique replaces the original return address with an attacker

controlled return address. This will allow an attacker to call custom functions or syscalls by

controlling execution flow every time the ret instruction is executed.

This code injection does not rely on any kind of buffer overflow, but we do utilise a ROP

chain. Given the level of access we are granted, we can directly overwrite the stack as present

in /proc/${PID}/mem .

Therefore, the method uses the /proc/self/maps file to find the ASLR random offsets,

from which we can locate functions inside a target process. With these function addresses we

can replace the normal return addresses present on the stack and gain control of the process.

To ensure that the process is in an expected state when we are overwriting the stack, we use

the sleep command as the slave process which is overwritten. The sleep command uses

the nanosleep syscall internally, which means that the sleep command will sit inside the

same function for almost its entire life (excluding setup and teardown). This gives us ample

opportunity to overwrite the stack of the process before the syscall returns, at which point we

will have taken control with our manufactured chain of ROP gadgets. To ensure that the

location of the stack pointer at the time of the syscall execution, we prefix our payload with a

NOP sled, which will allow the stack pointer to be at almost any valid location, which upon

return will just increase the stack pointer until it gets to and executes our payload.

A general purpose implementation for code injection can be found at

https://github.com/GDSSecurity/Cexigua. Efforts were made to limit the external

dependencies of this script, as in some very restricted environments utility binaries may not

be available. The current list of dependencies are:

GNU grep (Must support -Fao --byte-offset)

dd (required for reading/writing to an absolute offset into a file)

Bash (for the math and other advanced scripting features)

The general flow of this script is as follows:

Launch a copy of sleep in the background and record its process id (PID). As mentioned

above, the sleep command is an ideal candidate for injection as it only executes one

function for its whole life, meaning we won’t end up with unexpected state when overwriting

the stack. We use this process to find out which libraries are loaded when the process is

instantiated.

https://github.com/GDSSecurity/Cexigua

3/5

Using /proc/${PID}/maps we try to find all the gadgets we need. If we can’t find a gadget

in the automatically loaded libraries we will expand our search to system libraries in

/usr/lib . If we then find the gadget in any other library we can load that library into our

next slave using LD_PRELOAD. This will make the missing gadgets available to our payload.

We also verify that the gadgets we find (using a naive ‘grep’) are within the .text section of

the library. If they are not, there is a risk they will not be loaded in executable memory on

execution, causing a crash when we try to return to the gadget. This ‘preload’ stage should

result in a possibly empty list of libraries containing gadgets missing from the standard

loaded libraries.

Once we have confirmed all gadgets can be available to us, we launch another sleep process,

LD_PRELOAD ing the extra libraries if necessary. We now re-find the gadgets in the libraries,

and we relocate them to the correct ASLR base, so we know their location in the memory

space of the target region, rather than just the binary on disk. As above, we verify that the

gadget is in an executable memory region before we commit to using it.

The list of gadgets we require is relatively short. We require a NOP for the above discussed

NOP sled, enough POP gadgets to fill all registers required for a function call, a gadget for

calling a syscall, and a gadget for calling a standard function. This combination will allow us

to call any function or syscall, but does not allow us to perform any kind of logic. Once these

gadgets have been located, we can convert pseudo instructions from our payload description

file into a ROP payload. For example, for a 64bit system, the line ‘syscall 60 0’ will convert to

ROP gadgets to load ‘60’ into the RAX register, ‘0’ into RDI, and a syscall gadget. This should

result in 40 bytes of data: 3 addresses and 2 constants, all 8 bytes. This syscall, when

executed, would call exit(0) .

We can also call functions present in the PLT, which includes functions imported from

external libraries, such as glibc. To locate the offsets for these functions, as they are called by

pointer rather than syscall number, we need to first parse the ELF section headers in the

target library to find the function offset. Once we have the offset we can relocate these as with

the gadgets, and add them to our payload.

String arguments have also been handled, as we know the location of the stack in memory, so

we can append strings to our payload and add pointers to them as necessary. For example,

the fexecve syscall requires a char** for the arguments array. We can generate the array

of pointers before injection inside our payload and upon execution the pointer on the stack to

the array of pointers can be used as with a normal stack allocated char** .

Once the payload has been fully serialized, we can overwrite the stack inside the process

using dd , and the offset to the stack obtained from the /proc/${PID}/maps file. To

ensure that we do not encounter any permissions issues, it is necessary for the injection

script to end with the ‘exec dd’ line, which replaces the bash process with the dd process,

therefore transferring parental ownership over the sleep program from bash to dd .

4/5

After the stack has been overwritten, we can then wait for the nanosleep syscall used by

the sleep binary to return, at which point our ROP chain gains control of the application

and our payload will be executed.

The specific payload to be injected as a ROP chain can reasonably be anything that does not

require runtime logic. The current payload in use is a simple

open / memfd_create / sendfile / fexecve program. This disassociates the target

binary with the filesystem noexec mount flag, and the binary is then executed from

memory, bypassing the noexec restriction. Since the sleep binary is backgrounded on

execution by bash , it is not possible to interact with the binary to be executed, as it does not

have a parent after dd exits. To bypass this restriction, it is possible to use one of the

examples present in the libfuse distribution, assuming fuse is present on the target system:

the passthrough binary will create a mirrored mount of the root filesystem to the

destination directory. This new mount is not mounted noexec , and therefore it is possible

to browse through this new mount to a binary, which will then be executable.

A proof of concept video shows this passthrough payload allowing execution of a binary in

the current directory, as a standard child of the shell.

Future work:

To speed up execution, it would be useful to cache the gadget offset from its respective ASLR

base between the preload and the main run. This could be accomplished by dumping an

associative array to disk using declare -p , but touching disk is not necessarily always

https://asciinema.org/a/6iQLaamJlmVLz4iXLvrsORSZi

5/5

appropriate. Alternatives include rearchitecting the script to execute the payload script in the

same environment as the main bash process, rather than a child executed using $() . This

would allow for the sharing of environmental variables bidirectionally.

Limit the external dependencies further by removing the requirement for GNU grep. This

was previously attempted and deemed too slow when finding gadgets, but may be possible

with more optimised code.

The obvious mitigation strategy for this technique is to set ptrace_scope to a more

restrictive value. A value of 2 (superuser only) is the minimum that would block this

technique, whilst not completely disabling ptrace on the system, but care should be taken

to ensure that ptrace as a normal user is not in use. This value can be set by adding the

following line to /etc/sysctl.conf :

kernel.yama.ptrace_scope=2

Other mitigation strategies include combinations of Seccomp, SELinux or Apparmor to

restrict the permissions on sensitive files such as /proc/${PID}/maps or

/proc/${PID}/mem .

The proof of concept code, and Bash ROP generator can be found at

https://github.com/GDSSecurity/Cexigua

https://github.com/GDSSecurity/Cexigua

