
1/5

November 28, 2018

Changing memory protection in an arbitrary process.
perception-point.io/changing-memory-protection-in-an-arbitrary-process

Recently, we faced this very specific task: changing the protection flags of memory regions in

an arbitrary process. As this task may seem trivial, we encountered some obstacles and

learned new things in the process, mostly about Linux mechanisms, memory protection and

kernel development. Here is a brief overview of our work, including three approaches we

took and what made us seek for a better solution each time.

Introduction to mprotect.

In modern operating systems, each process has its own virtual address space (a mapping

from virtual addresses to physical addresses). This virtual address space consists of memory

pages (contiguous memory chunks of some fixed size), and each page has protection flags

which determine the kind of access allowed to this page (Read, Write & Execute). This

mechanism relies on the architecture page tables (fun fact: in the x64 architecture, you can’t

make a page write-only, even if you specifically request it from your operating system – it will

always be readable as well).

In Windows, you can change the protection of a memory region with the API

functions VirtualProtect or VirtualProtectEx. The latter makes our task very easy: its

first argument, hProcess, is “a handle to the process whose memory protection is to be

changed” (from MSDN).

Linux Memory Protection

In Linux, on the other hand, we’re not so lucky: the API to change memory protection is the

system calls mprotect or pkey_mprotect, and both always operate on the current process’

address space. We’ll review now our approaches to solve this task in Linux on x64

architecture (we assume root privileges).

APPROACH ONE

mprotect Code Injection.

Well, if mprotect always acts on the current process, we need to make our target process call

it from its own context. This is called code injection, and it’s achievable in many different

ways. We chose to implement it with the ptrace mechanism, which lets one process “observe

and control the execution of another process” (from the man page), including the ability to

https://perception-point.io/changing-memory-protection-in-an-arbitrary-process/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366899(v=vs.85).aspx

2/5

change the target process’ memory and registers. This mechanism is used in debuggers (like

gdb) and tracing utilities (like strace). An outline of the steps required to inject code using

ptrace:

1. Attach to the target process with ptrace. If there are multiple threads in the process, it

may be wise to stop all the other threads as well.

2. Find an executable memory region (by examining /proc/PID/maps) and write there the

opcode syscall (hex: 0f 05).

3. Modify the registers according to the calling convention: first, change rax to the system

call number of mprotect (which is 10). Then, the first three arguments (which are the

start address, the length and the protection desired) are stored in rdi, rsi, and rdx

respectively. Finally, change rip to the address used in step 2.

4. Resume the process until the system call returns (ptrace allows you to trace enters and

exits of system calls).

5. Recover the overridden memory and registers, detach from the process and resume its

normal execution.

This approach was our first and most intuitive one, and worked great until we discovered

another mechanism in Linux which completely ruined it: seccomp. Basically, it’s a security

facility in the Linux kernel which allows a process to enter itself into some kind of a “jail”,

where it can’t call any system call besides read, write, _exit and sigreturn. There is also an

option to specify arbitrary system calls and their arguments to filter only them.

Therefore, if a process enabled seccomp mode and we try inject a call to mprotect into it, then

the kernel will kill the process as it is not allowed to use this system call. We wanted to be

able to act on these processes as well, so the search for a better solution continues…

APPROACH TWO

Imitate mprotect in a kernel module.

The seccomp problem eliminated every solution from the process’ user mode, hence the next

approach certainly resides in kernel mode. In the Linux kernel, each thread (both user

threads and kernel threads) is represented by a structure named task_struct, and the current

thread (task) is accessible through the pointer current. The internal implementation of

mprotect in the kernel uses the pointer current, so our first thought was – let’s just copy-

paste the code of mprotect to our kernel module, and replace each occurrence of current with

a pointer to our target thread’s task_struct. Right?

Well, as you may have guessed, copying C code is not so trivial – there’s a heavy use of

unexported functions, variables and macros which we just cannot access. Some functions

declarations are exported in the header files, but their actual addresses aren’t exported by the

kernel. This specific problem can be solved if the kernel was compiled with kallsyms support,

and then it exports all of its internal symbols through the file /proc/kallsysm.

https://en.wikipedia.org/wiki/Seccomp

3/5

Despite these problems, we tried to implement only the essence of mprotect, even solely for

educational purposes. So we headed to write a kernel module which gets the target PID and

the parameters to mprotect, and imitates its behaviour. First, we need to obtain the desired

memory mapping object, which represents the address space of the thread:

 /* Find the task by the pid */
 pid_struct = find_get_pid(params.pid);
 if (!pid_struct)
 return -ESRCH;

 task = get_pid_task(pid_struct, PIDTYPE_PID);
 if (!task) {
 ret = -ESRCH;
 goto out;
 }

 /* Get the mm of the task */
 mm = get_task_mm(task);
 if (!mm) {
 ret = -ESRCH;
 goto out;
 }

 …
 …

out:
 if (mm) mmput(mm);
 if (task) put_task_struct(task);
 if (pid_struct) put_pid(pid_struct);

Now that we have the memory mapping object, we need to dig deeper. The Linux kernel

implements an abstraction layer to manage memory regions, each region is represented by

the structure vm_area_struct. To find the correct memory region, we use the

function find_vma which searches the memory mapping by the desired address.

The vm_area_struct contains the field vm_flags which represents the protection flags of the

memory region in an architecture-independent manner, and vm_page_prot which

represents it in an architecture-dependent manner. Changing these fields alone won’t really

affect the page table (but will affect the output of /proc/PID/maps, we tried it!). You can read

more about it here.

After some reading and digging into the kernel code, we detected the most essential work

needed to really change the protection of a memory region:

1. Change the field vm_flags to the desired protection.

2. Call the function vma_set_page_prot_func to update the field vm_page_prot

according to the vm_flags field.

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/

4/5

3. Call the function change_protection_func to actually update the protection bits in

the page table.

This code works, but it has many problems – first, we implement only the essential parts of

mprotect, but the original function does much more than we did (for example, splitting and

joining memory regions by their protection flags). Second, we use two internal functions

which are not exported by the kernel (vma_set_page_prot_func and

change_protection_func). We can call them using kallsyms, but this is prone to troubles

(perhaps their names will be changed in the future, or maybe the whole internal

implementation of memory regions will be altered). We wanted a more generic solution

which doesn’t take internal structures into consideration, so the search for a better solution

continues…

APPROACH THREE

Using the target process’s memory mapping.

This approach is very similar to the first one – there, we wanted to execute code in the

context of the target process. Here, instead, we execute code in our own thread, but we use

the “memory context” of the target process, meaning: we use its address space.

Changing your address space is possible in kernel mode through several API functions, of

them we will use use_mm. As the documentation clearly specifies, “this routine is intended

to be called only from a kernel thread context”. These are threads which are created in the

kernel and do not need any user address space, so it’s fine to change their address space (the

kernel’s region inside the address space is mapped the same way in every task).

One easy way to run your code in a kernel thread is the work queue interface of the kernel,

which allows you to schedule a work with a specific routine and specific arguments. Our work

routine is very minimal – it gets the memory mapping object of the desired process and the

parameters to mprotect, and does the following (do_mprotect_pkey is the internal function

in the kernel that implements the mprotect and pkey_mprotect system calls):

use_mm(suprotect_work->mm);
suprotect_work->ret_value = do_mprotect_pkey(suprotect_work->start,
 suprotect_work->len,
 suprotect_work->prot, -1);
unuse_mm(suprotect_work->mm);

When our kernel module gets a request to change protection in some process (through a

special IOCTL), it first finds the desired memory mapping object (as we explained in the

previous approach) and then just schedules the work with the right parameters.

5/5

This solution still has one minor problem – the function do_mprotect_pkey_func isn’t

exported by the kernel and needs to be fetched using kallsyms. Unlike the former solution,

this internal function is not very prone to changes as it’s tied to the system call

pkey_mprotect, and we don’t handle internal structures, hence we can call it only a “minor

problem”.

We hope you found some interesting information and techniques in this post. If you’re

interested, the source code of this proof-of-concept kernel module is available in our

github here.

https://github.com/perceptionpoint/suprotect

