
1/6

Command Injection
owasp.org/www-community/attacks/Command_Injection

Author: Weilin Zhong

Contributor(s): Wichers, Amwestgate, Rezos, Clow808, KristenS, Jason Li, Andrew Smith,

Jmanico, Tal Mel, kingthorin

Description

Command injection is an attack in which the goal is execution of arbitrary commands on the

host operating system via a vulnerable application. Command injection attacks are possible

when an application passes unsafe user supplied data (forms, cookies, HTTP headers etc.) to

a system shell. In this attack, the attacker-supplied operating system commands are usually

executed with the privileges of the vulnerable application. Command injection attacks are

possible largely due to insufficient input validation.

This attack differs from Code Injection, in that code injection allows the attacker to add their

own code that is then executed by the application. In Command Injection, the attacker

extends the default functionality of the application, which execute system commands,

without the necessity of injecting code.

Examples

Example 1

The following code is a wrapper around the UNIX command cat which prints the contents of

a file to standard output. It is also injectable:

https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/Code_Injection

2/6

#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv) {
 char cat[] = "cat ";
 char *command;
 size_t commandLength;

 commandLength = strlen(cat) + strlen(argv[1]) + 1;
 command = (char *) malloc(commandLength);
 strncpy(command, cat, commandLength);
 strncat(command, argv[1], (commandLength - strlen(cat)));

 system(command);
 return (0);
}

Used normally, the output is simply the contents of the file requested:

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command

is executed by catWrapper with no complaint:

$./catWrapper "Story.txt; ls"
When last we left our heroes...
Story.txt doubFree.c nullpointer.c
unstosig.c www* a.out*
format.c strlen.c useFree*
catWrapper* misnull.c strlength.c useFree.c
commandinjection.c nodefault.c trunc.c
writeWhatWhere.c

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary

commands could be executed with that higher privilege.

Example 2

The following simple program accepts a filename as a command line argument, and displays

the contents of the file back to the user. The program is installed setuid root because it is

intended for use as a learning tool to allow system administrators in-training to inspect

privileged system files without giving them the ability to modify them or damage the system.

int main(char* argc, char** argv) {
 char cmd[CMD_MAX] = "/usr/bin/cat ";
 strcat(cmd, argv[1]);
 system(cmd);
}

3/6

Because the program runs with root privileges, the call to system() also executes with root

privileges. If a user specifies a standard filename, the call works as expected. However, if an

attacker passes a string of the form “;rm -rf /”, then the call to system() fails to execute cat

due to a lack of arguments and then plows on to recursively delete the contents of the root

partition.

Example 3

The following code from a privileged program uses the environment variable $APPHOME to

determine the application’s installation directory, and then executes an initialization script in

that directory.

...
char* home=getenv("APPHOME");
char* cmd=(char*)malloc(strlen(home)+strlen(INITCMD));
if (cmd) {
 strcpy(cmd,home);
 strcat(cmd,INITCMD);
 execl(cmd, NULL);
}
...

As in Example 2, the code in this example allows an attacker to execute arbitrary commands

with the elevated privilege of the application. In this example, the attacker can modify the

environment variable $APPHOME to specify a different path containing a malicious version

of INITCMD. Because the program does not validate the value read from the environment, by

controlling the environment variable, the attacker can fool the application into running

malicious code.

The attacker is using the environment variable to control the command that the program

invokes, so the effect of the environment is explicit in this example. We will now turn our

attention to what can happen when the attacker changes the way the command is

interpreted.

Example 4

The code below is from a web-based CGI utility that allows users to change their passwords.

The password update process under NIS includes running make in the /var/yp directory.

Note that since the program updates password records, it has been installed setuid root.

The program invokes make as follows:

system("cd /var/yp && make &> /dev/null");

Unlike the previous examples, the command in this example is hardcoded, so an attacker

cannot control the argument passed to system(). However, since the program does not

specify an absolute path for make, and does not scrub any environment variables prior to

4/6

invoking the command, the attacker can modify their $PATH variable to point to a malicious

binary named make and execute the CGI script from a shell prompt. And since the program

has been installed setuid root, the attacker’s version of make now runs with root privileges.

The environment plays a powerful role in the execution of system commands within

programs. Functions like system() and exec() use the environment of the program that calls

them, and therefore attackers have a potential opportunity to influence the behavior of these

calls.

There are many sites that will tell you that Java’s Runtime.exec is exactly the same as C’s

system function. This is not true. Both allow you to invoke a new program/process. However,

C’s system function passes its arguments to the shell (/bin/sh) to be parsed, whereas

Runtime.exec tries to split the string into an array of words, then executes the first word in

the array with the rest of the words as parameters. Runtime.exec does NOT try to invoke the

shell at any point. The key difference is that much of the functionality provided by the shell

that could be used for mischief (chaining commands using “&”, “&&”, “|”, “||”, etc,

redirecting input and output) would simply end up as a parameter being passed to the first

command, and likely causing a syntax error, or being thrown out as an invalid parameter.

Example 5

The following trivial code snippets are vulnerable to OS command injection on the

Unix/Linux platform:

C:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)
{
 char command[256];

 if(argc != 2) {
 printf("Error: Please enter a program to time!\n");
 return -1;
 }

 memset(&command, 0, sizeof(command));

 strcat(command, "time ./");
 strcat(command, argv[1]);

 system(command);
 return 0;
}

5/6

If this were a suid binary, consider the case when an attacker enters the following: ls; cat

/etc/shadow . In the Unix environment, shell commands are separated by a semi-colon. We

now can execute system commands at will!

Java:

There are many sites that will tell you that Java’s Runtime.exec is exactly the same as C’s

system function. This is not true. Both allow you to invoke a new program/process. However,

C’s system function passes its arguments to the shell (/bin/sh) to be parsed, whereas

Runtime.exec tries to split the string into an array of words, then executes the first word in

the array with the rest of the words as parameters. Runtime.exec does NOT try to invoke the

shell at any point. The key difference is that much of the functionality provided by the shell

that could be used for mischief (chaining commands using & , && , | , || , etc, redirecting

input and output) would simply end up as a parameter being passed to the first command,

and likely causing a syntax error, or being thrown out as an invalid parameter.

Example 6

The following PHP code snippet is vulnerable to a command injection attack:

<?php print(“Please specify the name of the file to delete”); print(“<p>”);

$file=$_GET[‘filename’]; system(“rm $file”); ?>

The following request and response is an example of a successful attack:

Request http://127.0.0.1/delete.php?filename=bob.txt;id

Response

Please specify the name of the file to delete

uid=33(www-data) gid=33(www-data) groups=33(www-data)

Sanitizing Input

Replace or Ban arguments with “;”
Other shell escapes available
Example:
– &&
– |
– ...

Related Controls

Ideally, a developer should use existing API for their language. For example (Java): Rather

than use Runtime.exec() to issue a ‘mail’ command, use the available Java API located at

javax.mail.* .

https://owasp.org/www-community/controls/

6/6

If no such available API exists, the developer should scrub all input for malicious characters.

Implementing a positive security model would be most efficient. Typically, it is much easier

to define the legal characters than the illegal characters.

References

Category:Injection

https://owasp.org/www-community/Injection_Flaws

