
1/6

Guilherme Thomazi March 27, 2019

Running ELF executables from memory
guitmz.com/running-elf-from-memory

 7 minute read Published: 27 Mar, 2019

Executing ELF binary files from memory with memfd_create syscall

Something that always fascinated me was running code directly from memory. From Process

Hollowing (aka RunPE) to PTRACE injection. I had some success playing around with it in

C in the past, without using any of the previous mentioned methods, but unfortunately the

code is lost somewhere in the forums of VXHeavens (sadly no longer online) but the code

was buggy and worked only with Linux 32bit systems (I wish I knew about shm_open back

then, which is sort of an alternative for the syscall we are using in this post, mainly targeting

older systems where memfd_create is not available).

Overview and code

Recently, I have been trying to code in assembly a bit, I find it very interesting and I

believe every developer should understand at least the basics of it. I chose FASM as my

assembler because I think it is very simple, powerful and I like its concepts (like same source,

same output). More information about its design can be found here. Anyway, I have written a

small tool, memrun , that allows you to run ELF files from memory using the memfd_create

syscall, which is available in Linux where kernel version is >= 3.17 .

What happens with memfd_create is that it acts like malloc syscall but will return a file

descriptor that references an anonymous file (which does not exists in the disk) and we can

pass it to execve and execute it from memory. There are a couple in-depth articles about it

around the internet already so I will not get too deep into it. A nice one by magisterquis

can be found at his page

The assembly code might look too big but there are some things we need to take care in this

case that we don’t need to when writing in a HLL like Go (as you can see in its example

below). Also it’s nice if you want to use the code for an exploit, you can just adjust the

assembly instructions to your needs. Both examples are for x86_64 only:

https://www.guitmz.com/running-elf-from-memory/
https://www.adlice.com/runpe-hide-code-behind-legit-process/
https://blog.xpnsec.com/linux-process-injection-aka-injecting-into-sshd-for-fun/
http://man7.org/linux/man-pages/man3/shm_open.3.html
https://flatassembler.net/
https://flatassembler.net/docs.php?article=design
http://man7.org/linux/man-pages/man2/memfd_create.2.html
https://magisterquis.github.io/2018/03/31/in-memory-only-elf-execution.html

2/6

format ELF64 executable 3

include "struct.inc"
include "utils.inc"

segment readable executable
entry start

start:
;---
; parsing command line arguments
;---
 pop rcx ; arg count
 cmp rcx, 3 ; needs to be at least two for the self program
arg0 and target arg1
 jne usage ; exit 1 if not

 add rsp, 8 ; skips arg0
 pop rsi ; gets arg1

 mov rdi, sourcePath
 push rsi ; save rsi
 push rdi
 call strToVar

 pop rsi ; restore rsi
 pop rdi
 mov rdi, targetProcessName
 pop rsi ; gets arg2
 push rdi
 call strToVar
;---
; opening source file for reading
;---
 mov rdi, sourcePath ; loads sourcePath to rdi
 xor rsi, rsi ; cleans rsi so open syscall doesnt try to use it
as argument
 mov rdx, O_RDONLY ; O_RDONLY
 mov rax, SYS_OPEN ; open
 syscall ; rax contains source fd (3)
 push rax ; saving rax with source fd
;---
; getting source file information to fstat struct
;---
 mov rdi, rax ; load rax (source fd = 3) to rdi
 lea rsi, [fstat] ; load fstat struct to rsi
 mov rax, SYS_FSTAT ; sys_fstat
 syscall ; fstat struct conntains file information
 mov r12, qword[rsi + 48] ; r12 contains file size in bytes (fstat.st_size)
;---
; creating memory map for source file
;---
 pop rax ; restore rax containing source fd
 mov r8, rax ; load r8 with source fd from rax
 mov rax, SYS_MMAP ; mmap number

3/6

 mov rdi, 0 ; operating system will choose mapping destination
 mov rsi, r12 ; load rsi with page size from fstat.st_size in
r12
 mov rdx, 0x1 ; new memory region will be marked read only
 mov r10, 0x2 ; pages will not be shared
 mov r9, 0 ; offset inside test.txt
 syscall ; now rax will point to mapped location
 push rax ; saving rax with mmap address
;---
; close source file
;---
 mov rdi, r8 ; load rdi with source fd from r8
 mov rax, SYS_CLOSE ; close source fd
 syscall
;---
; creating memory fd with empty name ("")
;---
 lea rdi, [bogusName] ; empty string
 mov rsi, MFD_CLOEXEC ; memfd mode
 mov rax, SYS_MEMFD_CREATE
 syscall ; memfd_create
 mov rbx, rax ; memfd fd from rax to rbx
;---
; writing memory map (source file) content to memory fd
;---
 pop rax ; restoring rax with mmap address
 mov rdx, r12 ; rdx contains fstat.st_size from r12
 mov rsi, rax ; load rsi with mmap address
 mov rdi, rbx ; load memfd fd from rbx into rdi
 mov rax, SYS_WRITE ; write buf to memfd fd
 syscall
;---
; executing memory fd with targetProcessName
;---
 xor rdx, rdx
 lea rsi, [argv]
 lea rdi, [fdPath]
 mov rax, SYS_EXECVE ; execve the memfd fd in memory
 syscall
;---
; exit normally if everything works as expected
;---
 jmp normal_exit
;---
; initialized data
;---
segment readable writable
fstat STAT
usageMsg db "Usage: memrun <path_to_elf_file> <process_name>", 0xA, 0
sourcePath db 256 dup 0
targetProcessName db 256 dup 0
bogusName db "", 0
fdPath db "/proc/self/fd/3", 0
argv dd targetProcessName

4/6

package main

import (
"fmt"
"io/ioutil"
"os"
"syscall"
"unsafe"

)

// the constant values below are valid for x86_64
const (

mfdCloexec = 0x0001
memfdCreate = 319

)

func runFromMemory(displayName string, filePath string) {
fdName := "" // *string cannot be initialized
fd, _, _ := syscall.Syscall(memfdCreate, uintptr(unsafe.Pointer(&fdName)),

uintptr(mfdCloexec), 0)

buffer, _ := ioutil.ReadFile(filePath)
_, _ = syscall.Write(int(fd), buffer)

fdPath := fmt.Sprintf("/proc/self/fd/%d", fd)
_ = syscall.Exec(fdPath, []string{displayName}, nil)

}

func main() {
lenArgs := len(os.Args)
if lenArgs < 3 || lenArgs > 3 {
 fmt.Println("Usage: memrun process_name elf_binary")
 os.Exit(1)
}

runFromMemory(os.Args[1], os.Args[2])
}

The full code for both versions can be found in this repo:

https://github.com/guitmz/memrun

See it in action

Allow me to show it in action. Let’s start by creating a simple target file in C , named

target.c . The file will try to open itself for reading and if it can’t, it will print a message

forever every 5 seconds. We will execute it from memory:

https://github.com/guitmz/memrun

5/6

#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv)
{
 printf("My process ID : %d\n", getpid());

 FILE *myself = fopen(argv[0], "r");
 if (myself == NULL) {
 while(1) {
 printf("I can't find myself, I must be running from memory!\n");
 sleep(5);
 }
 } else {
 printf("I am just a regular boring file being executed from the disk...\n");
 }

 return 0;
}

Now we build target.c :

$ gcc target.c -o target

We should also build our FASM or Go tool, I will use the assembly one here:

$ fasm memrun.asm
flat assembler version 1.73.04 (16384 kilobytes memory, x64)
4 passes, 1221 bytes.

Running the file normally gives us this:

$./target
My process ID : 4944
I am just a regular boring file being executed from the disk...

But using memrun to run it will be totally different:

$./memrun target MASTER_HACKER_PROCESS_NAME_1337
My process ID : 4945
I can't find myself, I must be running from memory!
I can't find myself, I must be running from memory!

Furthermore, if you look for its pid with ps utility, this is what you get:

$ ps -f 4945
UID PID PPID C STIME TTY STAT TIME CMD
guitmz 4945 4842 0 15:31 pts/0 S+ 0:00 MASTER_HACKER_PROCESS_NAME_1337

Finally, let’s check the process directory:

6/6

$ ls -l /proc/4945/{cwd,exe}
lrwxrwxrwx 1 guitmz guitmz 0 Mar 27 15:38 /proc/4945/cwd ->
/home/guitmz/memrun/assembly
lrwxrwxrwx 1 guitmz guitmz 0 Mar 27 15:38 /proc/4945/exe -> /memfd: (deleted)

Note the /memfd: (deleted) part, no actual file in disk for this process :)

For those who know, this can be an interesting technique to run stealthy binaries in Linux,

you can go even further by giving it a proper name (like a real Linux process) and detach it

from the tty and change its cwd with some simple approches. Tip: fork is your friend :)

TMZ

