J Comput Virol Hack Tech
DOI 10.1007/s11416-017-0291-9

@ CrossMark

ORIGINAL PAPER

Anti-emulation trends in modern packers: a survey on the
evolution of anti-emulation techniques in UPA packers

Citilin Valeriu Liti! - Doina Cosovan!

Received: 28 May 2016 / Accepted: 22 January 2017
© Springer-Verlag France 2017

Abstract Writing modern day executable packers has
turned into a rather profitable business. In many cases, the
reason for packing is not protecting genuine applications
against piracy or plagiarism, but rather avoiding reverse-
engineering and detection of malicious samples. Unlike
developers, which show moderate interest for using a packer
and lack time and resources for creating one, malware cre-
ators show a huge interest and are willing to spend large
amounts of money to use this technology (especially if it
offers protection against security solutions). This happens
mainly because protecting from piracy and plagiarism isn’t
that profitable as spreading new and undetected malware on
as many computers as possible. Consequently, creating a cus-
tom packer designed to avoid malware detection has grown
into a very profitable business.

However, developing a good packer is not an easy task
to accomplish. Novel techniques of achieving anti-static
analysis, anti-virtual machine, anti-sandbox, anti-emulation,
anti-debugging, anti-patching, and so on, have to be dis-
covered and added regularly. From the malware creator’s
perspective, this must happen frequently enough so that the
updates are issued shortly after malware researchers ana-
lyze and bypass the existing mechanisms because, once these
techniques are bypassed, the detection rate increases in the
case of the malware samples packed with the old version of
the packer.

In this paper, we present our findings which resulted from

B Doina Cosovan
doina.cosovan @info.uaic.ro

Citalin Valeriu Litd
catalin.lita@info.uaic.ro

Dragos Gavrilug
dgavrilut@bitdefender.com

Alexandru loan Cuza University, Iasi, Romania

Published online: 13 February 2017

- Dragos Gavrilut!

closely monitoring the fight between malware researchers
and packer developers during a period of almost two years.
We focus on three different packers used for prevalent mal-
ware families like Upatre, Gamarue, Hedsen. We named
those packers UPA 1, UPA 2, and UPA 3 and we discuss the
mechanisms used in them to achieve anti-emulation. Each
technique is presented by listing the code and explaining the
inner workings in details. In the end, we manage to get a
grasp of the current trends in achieving anti-emulation when
developing modern packers.

Keywords Malware - Packer - Reverse-engineering -
Anti-emulation

1 Introduction

Malware, just like any other software, started as a plain code
program. As this kind of code is really simple to detect, it has
become clear that other means for hiding a program’s true
intentions had to be developed. Thus malware creators started
to encrypt the malware body. This lead malware researchers
to switch the pattern matching detection signatures from the
malware body to the malware decryptor, as the latter was
static and written in plain code.

As a consequence, two different techniques emerged in
order to protect the malicious code: oligomorphism and
polymorphism. While oligomorphic malware uses different
decryptors, polymorphic malware uses the same decryptor,
changed with the help of various techniques like register
swapping, routine permutation, code reordering, equivalent
code substitution, and code transposition. The use of these
operations can change a piece of code in a way that it becomes
unrecognizable even to human eye.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-017-0291-9&domain=pdf
http://orcid.org/0000-0002-8598-930X

C. V. Litd et al.

Since it is not feasible to search all decryptors used in the
wild in case of oligomorphism nor to generate all possible
decryptors in case of polymorphism, the emulators started
to be used for malware detection in order to dynamically
execute the decryptor and obtain the decrypted virus body.
Because the virus body is unchanged or rather similar, the
pattern matching signatures can trigger the detection on the
content obtained after emulation.

Also, obtaining the original code of the payload is impor-
tant for reverse engineering the malicious code in order to
get an understanding regarding the malware inner workings.
This is usually the first step when cleaning an affected com-
puter or taking down a botnet.

As a reaction to the appearance of code emulators, mal-
ware creators started to develop anti-emulation mechanisms
in order for the sample to be able to realize it is running in
an emulator and to stop decrypting the malicious body.

Besides anti-emulation, various anti-virtual machine, anti-
sandbox, anti-debugging, and anti-disassembly techniques
started to be developed. Some groups specialized partic-
ularly in protection against payload extraction, others in
various anti-disassembly mechanisms, and so on. Thus build-
ing packers became a profitable industry on its own.

Since anti-sandbox, anti-debugging, anti-virtual machine,
and anti-disassembly mechanisms have been widely covered
in the literature, we focus on less studied anti-emulation
techniques. We also cover the context in which these anti-
emulation techniques are used and we monitor the changes
they undergo as packer creators adapt to advances made in
the emulator evolution by the security solutions.

This paper is structured as follows. The Section 2 presents
the papers that studied and detailed the anti-sandbox, anti-
debugging, anti-virtual machine, and anti-disassembly mech-
anisms that we will further refer as anti-* techniques. The
Sections 3, 4, and 5 cover the evolution of the anti-emulation
techniques for the UPA 1, UPA 2, and respectively UPA 3
packers. In the end, in Section 6, we conclude by discussing
the difficulty of implementing and bypassing the presented
anti-emulation techniques as well as the strategies used by
each of the packers in order to achieve their goals.

2 Related work
2.1 Anti-* techniques

Anti-virtual machine, anti-sandbox, anti-debugging, and
anti-disassembly techniques have been studied extensively
in the literature. A few papers detailing them are presented
as follows.

The authors in [1] present an overview of malware protec-
tion mechanisms directed against disassemblers, debuggers
and virtual machines. 34 anti-debugging, 5 anti-disassembly,

@ Springer

10 obfuscation, and 3 anti-virtual machine techniques are
analyzed in detail. Detection mechanisms are proposed
accordingly in order to automatically search those specific
techniques through a collection of more than 4 million sam-
ples and provide statistics. Also, statistics regarding the used
packers are provided. Our research focuses on the anti-
emulation techniques instead.

In [2], software armoring techniques like packers, run-
time obfuscations, virtual machine and debugger detectors
are presented with the help of a newly developed platform,
called Saffron. It makes use of dynamic instrumentation and
page fault assisted debuggers in order to achieve its task.

[3] comprises a study on anti-virtual machine, anti-
sandbox, and anti-debugger techniques currently used by
malicious samples like Zeus, SpyEye, SpyRat in order to
target specific operating systems (Windows XP, Windows
Vista, Windows 7), virtual machines (VMWare, Virtual Box),
debuggers (SoftICE), and sandbox solutions (Sandboxie,
Anubis, GFI CWSandbox, JoeBox, Norman Sandbox). The
techniques are discussed in detail and real world case studies
are presented.

[4] provides a taxonomy of anti-sandbox techniques: arti-
fact fingerprinting (related processes, environment specific
files, registry keys, I/O ports, devices and its attributes), exe-
cution environment fingerprinting, timing detection. Also, a
system, called TENTACLE, is presented. Its purpose is to
automatically discover anti-sandbox techniques. The mali-
cious samples are executed over and over again. Every time,
they are expected to take different paths as, at each execution,
various sandbox / virtual machine related artifacts are cam-
ouflaged. With the help of CEI (Code Execution Integrity),
execution branches are detected. In the end, it is supposed to
identify unnatural process terminations, which are expected
to be anti-sandbox mechanisms.

In [5], the authors consider an unpacker to be one of
the following: a memory-dumper, a debugger, an emulator,
or an Write-Execute interceptor. The paper covers various
ways of tricking each of these perspectives, cumulating more
than 30 trick categories. The author continues its research
in a series of 9 articles, containing description and counter-
measures for anti-dumping, anti-debugging, anti-emulating,
anti-disassembly, and other miscellaneous tricks.

[6] contains a survey presenting debugger detection
and attacks, software / hardware breakpoint and patching
detection, anti-analysis, anti-disassembly, and other tricking
mechanisms (process injection, debugger blocker, TLS call-
backs, stolen bytes, multi-threaded packers, API redirection,
and virtual machines).

[7] covers common unpacking methods in an Anti-
Malware engine, ways of tricking various types of unpacking
(static unpacking, emulator unpacking, both mixed rou-
tine and emulator-based unpacking), and defenses against
them.

Anti-emulation trends in modern packers

2.2 Anti-debugging techniques

Some examples of papers that focus on anti-debugging are
detailed below.

[8] presents an enormous collection of anti-debugging
techniques at different levels (hardware, process-level,
system-level, user-interface) regarding different aspects
(APIs, execution timing, uncontrolled execution, flags, heap).
Both detailed description and code are provided where nec-
essary.

[9] classifies and presents various anti-debugging tech-
niques used on Windows NT-based operating systems, focus-
ing more on changes at the process level.

[10] provides an overview of the debugging mechanism
in Windows, a classification of the most prevalent debug-
gers according to the debugging methods they use, and a
description of anti-debugging strategies which makes use of
debugging API, special debug structures, and exceptions.

In [11], the authors developed a taxonomy of mal-
ware evasion techniques, focusing on anti-virtualization and
anti-debugging behavior (hardware, execution environment,
application). The prevalence of these techniques is analyzed
by executing 6900 distinct malware samples in three different
environments: in real systems, in virtual machines, and with
a debugger attached. In the end, a mechanism is developed,
which protects plain machines by simulating a monitored
environment.

While some papers present anti-debugging techniques as
actions taken by cyber-criminals in order to harden mal-
ware analysis and struggle to find ways of automatically
detecting and mitigating them, other papers present the devel-
oper’s view on the matter. Specifically, these mechanisms are
analyzed in the light of helping developers to protect their
code, as in [12]. In this paper, a few API-based, registry-
based, hardware-based, timing-based, and exception-based
anti-debugging techniques are presented along with some
ways to automatically detect modified code and directly
access process and thread blocks containing details about
the running process.

Another paper aiming at protecting software through
anti-debugging techniques is [13]. The proposed solution,
SPAD, implements the most popular 13 software-only anti-
debugging methods. It was tested and proved successful with
8 widely used debuggers, including user-mode debuggers
like HideOD, OllyDbg, StrongOD, Phantom, and Ollyice;
kernel debuggers like WinDbg; and system-level debuggers
like Syser, SoftICE.

The authors in [14], have also developed an anti-debugging
framework, that unlike [13], is based on hardware virtualiza-
tion technology. It provides solutions against software and
hardware breakpoints, but also protects the target process
from being accessed by other processes.

2.3 Anti-disassembly techniques

The following papers present an interest in anti-disassembly
techniques.

The authors in [15], came up with mechanisms used to
thwart the disassembly process, like junk insertion, thwarting
linear sweep, thwarting recursive traversal (branch functions,
call conversion, opaque predicates, jump table spoofing).
These were tested against 2 widely used static disassembly
algorithms and they failed to correctly disassemble 65% of
the instructions and 85% of the functions.

A technique, based on dynamic code generation at run-
time, is proposed in [16].

In [17], authors propose a few techniques regarding binary
analysis, based on control flow graph information and statis-
tical methods, in order to improve the disassembly process of
malicious samples that make use of anti-disassembly tech-
niques. Interestingly, the authors have observed 4 main wrong
assumptions made by most disassemblers, which allows for
them to be tricked in incorrectly disassembling samples:
valid instructions must not overlap, conditional jumps can
either be taken or not taken, an arbitrary amount of junk
bytes can be inserted at unreachable locations, and the con-
trol flow does not have to continue immediately after a call
instruction. They also propose and test solutions for these
problems.

2.4 Anti-virtual machine techniques

Research related to anti-virtual machine mechanisms is pre-
sented in the following papers.

In [18], the authors discuss a few attacks on virtual
machine emulators for VM Ware, VirtualPC, Parallels, Bochs,
Hydra, QEMU, and Xen. The presented attacks aim at detect-
ing the virtual machine (in order for the malware to stop
performing the malicious actions while executed in a virtual
environment), and performing denial of service (causing the
virtual environment to crash). In the end, a few recommen-
dations are provided in order to protect against some of the
presented attacks. The author continues his work in [19], dis-
cussing even more detection techniques, attacks, and defense
mechanisms for the virtual machine emulators discussed in
its previous paper, but also analyzing a few more: Hydra,
Sandbox, VirtualBox, CWSandbox.

In [20], the security level of using virtual machines is ana-
lyzed. A virtual machine is considered to be “root secure” if
no level of privilege within the virtualized guest environ-
ment permits interference with the host system. The analysis
was performed by analyzing the source code in case of
open-source emulators and black-box testing based on fuzz
technique for proprietary software products. As tools, they
used mainly crashme for stress testing and iofuzz for fuzz

@ Springer

C. V. Litd et al.

testing. In the end, various vulnerabilities have been discov-
ered for QEMU, VMware Workstation and Server, Bochs,
Xen, and two other undisclosed virtual machines.

In [21], the author presents some security flaws that are
unique to virtual environments and which can be used to
exploit any virtualization technology. These include commu-
nication between VMs or between VM and host, VM Escape,
VM monitoring from the host, VM monitoring from another
VM, Denial of Service, Guest-to-Guest attack, external mod-
ification of a VM, external modification of the hypervisor.

In [22], a way to detect the presence of a virtual machine
using the local data table is described. While [23] illustrates a
few virtual machine detection methods and introduces DSD
tracer, a malware analysis framework that integrates static
and dynamic analysis.

2.4.1 Anti-emulation techniques

Many advances related to the anti-virtual machine, anti-
sandbox, anti-debugging, and anti-disassembly techniques
have been accomplished and information is readily available.
The anti-emulation mechanisms, however, were covered
only partly in a small number of papers, presented as
follows.

In [24], authors seek to answer the question whether sys-
tem emulators, which handle instructions in software, are
more difficult to detect than traditional virtual machines. In
order to find the answer, various mechanisms of detecting
system emulators are discussed, which involve analyzing dif-
ferences in behavior, timing, and hardware specific values.

In [25], an anti-anti-emulation system is proposed. It mon-
itors the changes performed by the emulator and repairs
the differences. The anti-emulation checks addressed in this
paper involve timing attacks, CPU semantics attacks, and
hardware characteristic attacks.

The [26] is an overview of the rogue malware in the past
years. Since they also present a few interesting anti-emulation
technique used by this malware category, this paper is also
relevant to our research.

The paper [7] explains very shortly the implications that
arise on executing, in an emulated environment, of samples
using modern or undocumented CPU instructions, fake API
calls, structured exception handling, and long loops. Various
mechanisms of bypassing the conditions used to decide when
to stop the emulation process are discussed as well.

The most extensive and detailed explanation of various
anti-emulation techniques is presented in [5]. Mechanisms
like unimplemented or undocumented instructions, unimple-
mented or internal APIs, invalid API parameters, software
interrupts, time locks, selector verification, memory layout
and file format tricks are discussed emphasizing their impact
on emulators.

@ Springer

3 UPA 1 packer

UPA 1 is an advanced packer, used by prevalent malware like
the Upatre downloader, Gamarue worm, Hedsen spammer
and others. We started analyzing this packer’s evolution when
the first samples were identified, in May 2013, and continued
up until the end of 2015. Interestingly, the packer was bundled
with various and complex anti-emulation techniques from the
beginning, continuing to add even more, month after month.
This advertises the packer creators as experts in the field.

During the entire UPA 1 evolution we have been monitor-
ing, the mechanisms used to encrypt the payload remained
fairly constant and consisted in a combination of base64,
RTL compression, and a simple encryption (for example, the
XOR operation using a 1-byte key). In this section, we will
present the most important anti-emulation techniques used
by this packer to prevent a security solution from detecting
its payload.

3.1 Rare instructions

Emulators implement many assembly instructions, but not all
of them. Thus, if a packer is using a rare assembly instruction,
the emulator will not be able to process it and the payload
will not be decrypted. An example of rare instruction usage
can be seen in Listing 1.

Listing 1 Using Rare Instructions

movq
movq

mml, qword ptr [ebp+var_4]
gword ptr [esp], mml

3.2 Rare API functions

Similarly, the emulators implement only widely used API
functions. Calling obscure or even undocumented API func-
tions cause an abrupt termination of the application when
executed in the emulator. UPA 1 uses the not so common
CryptStringToBinary API function to decrypt a base64-
encrypted buffer.

3.3 PEB structure

The PEB structure ! is usually parsed by malware creators in
order to obtain the image base of loaded libraries or to detect
debugger presence by checking the value of the NtGlob-
alFlag. The second technique is illustrated in Listing 2.

Listing 2 Checking NtGlobalFlag from PEB Structure

mov eax, PEB_pointer
push eax

! https://msdn.microsoft.com/en-us/library/windows/desktop/
2a813706(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx

Anti-emulation trends in modern packers

mov eax, [eax+68h] ; NtGlobalFlag
and al, 70h

cmp al, 70h

jz short debugger_not_present

Although the main purpose of this technique is to detect
debugger’s presence, it acts as anti-emulation as well because
the emulators may not have an exact implementation of the
PEB structure.

3.4 TLS callbacks

If the emulator doesn’t know that it must run a TLS call-
back before running the code from the entry point, then the
execution might differ from the intended one.

This packer registers the TLS callback TlsCallback_0,
which executes the following actions:

detect debugger presence by checking the NtGlobalFlag
value from PEB

parse LDR_DATA from PEB structure to get the image
base of kernel32 and ntdll libraries

decrypt the name and get the address of the RtIDecom-
pressBuffer function

decrypt the name and get the address of the ZwUn-
map ViewOfSection function

The TLS callback computes the addresses of the ker-
nel32 and ntdll libraries and of the RtlDecompressBuffer
and ZwUnmap ViewOfSection functions, which are used in
the code from the entry point. If the TLS callback is not exe-
cuted before the main function, the sample will try to use
those addresses, which are not properly initialized in this
case, and will crash.

3.5 Windows API results

Checking the return value of a specific Windows API
function, called with specific parameters, is another anti-
emulation technique implemented by UPA 1. It is illustrated
in Listing 3.

Listing 3 Checking Return Value of API Call

no_handle = FindWindowA(&ClassName,
"nngrohcebymvibaqcwvq.dmsbqon")
if (OpenClipboard (no_handle))
{
unpack_and_execute_payload ();

}

First, the FindWindowA function is called with a ran-
dom window name. If it is correctly implemented, then it
will fail and will return NULL. Then, its result is passed

as a parameter to the OpenClipboard function. The Open-
Clipboard function succeeds if either the passed parameter
is a valid handle or NULL. In case OpenClipboard function
succeeds, the sample will continue by unpacking and execut-
ing the payload. Otherwise, if the FindWindowA function is
incorrectly implemented and returns a value different from 0,
which is not a valid handle, then OpenClipboard will fail and
the program will finish its execution. The same thing happens
if OpenClipboard is incorrectly implemented, failing when
receiving NULL as parameter.

3.6 FastPebLockRoutine callback

This trick starts by extracting the operating system version
from the PEB structure. If it matches Windows XP or Win-
dows 2000, it sets the FastPebLockRoutine’s field from the
PEB structure to a pointer to a callback function. By call-
ing RtlAcquirePebLock, it causes the callback function to
be executed. In case of newer operating systems, the call-
back function is called directly, without the entire mechanism
of FastPebLockRoutine. The execution flow is illustrated in
Listing 4.

Listing 4 Registering FastPebLockRoutine Callback
if (is_WinXP() or is_Win2000())
{
register_callback(
FastPebLockRoutine ,
callback_function);
RtlAcquirePebLock ();
1
else
{
callback_function ();

}

Most probably, the Anti-Virus emulators are running a
Windows system matching one of the two specified versions.
If the sample is executed on an operating system usually
used by the emulators, then, instead of executing the function
directly, it is set as callback in the PEB structure. Thus the
function is not executed if the emulator doesn’t implement
this specific callback mechanism.

The callback for the FastPebLockRoutine decrypts the
encrypted payload and injects it into a newly created process.
Consequently, ignoring the callback means not executing the
payload.

3.7 SecureMemoryCache callback
This technique is similar to the previous one. It reg-
isters a callback function by calling RtlRegisterSecure-

MemoryCacheCallback. Next it calls RtlIFlushSecureMem-
oryCache in order to trigger the registered callback function.

@ Springer

C. V. Litd et al.

An emulator won’t execute the callback until it implements
this specific mechanism.

3.8 TopLevelExceptionFilter callback

The function to be executed next is registered as the
TopLevelExceptionFilter handler by calling the SetUnhan-
dledExceptionFilter function, as illustrated in Listing 5.

Listing 5 Setting UnhandledExceptionFilter Callback

SetUnhandledExceptionFilter (
TopLevelExceptionFilter_handler);

int TopLevelExceptionFilter_handler(
EXCEPTION_POINTERS xExceptionInfo)
{
exception_record =
ExceptionInfo[0]—>ExceptionRecord;
RtlFlushSecureMemoryCache (
&memory_cache, memory_length);
return 1;

}

Then, in a newly created thread, an exception is gen-
erated by design. The generated exception triggers the
TopLevelExceptionFilter_handler function that was previ-
ously registered. The callback function calls RtlFlushSe-
cureMemoryCache that triggers another callback function,
as described in the previous technique.

3.9 Window creation callback

A WindowClass is registered by calling RegisterClassExA.
It has a field called wnd_proc, which can be initialized with
the address of a function to be triggered after the CreateWin-
dowEXxA function is called. Emulators don’t usually call the
wnd_proc function.

Atthe beginning of the year 2015, the UPA 1 packer added,
for a short period of time, a new anti-emulation technique.
Specifically, when calling the window procedure, with the
WM_CREATE message, the function expects the EBX reg-
ister to have the value 0. Based on the EBX register value, it
computes the location where the address of an API function,
calculated by CRC, will be saved, as presented in Listing 6.

Listing 6 Saving API address

mov [ebx+edx 4], eax

If the EBX register has a value different than O when the
function is called, then the location where the API function
address is saved will be dependent on that value. Being saved
at a different address, the old value from the intended location
will be called later on, causing a crash.

@ Springer

3.10 Big loops

UPA 1 makes use of big loops with millions of iterations. This
technique is not new, but still an effective one. It undergoes
many changes during the 2015 year.

InMarch 2015, it just calls a function with ECX containing
the number of loops, as illustrated in Listing 7.

Listing 7 Big Loops in March 2015

ecx, 6.110.179
big_loop_calling_IsDebuggerPresent

mov
call

In June 2015, it uses two big loops, one with an API call
and the other without an API call, as can be observed in
Listing 8.

Listing 8 Big Loops in June 2015

mov ecx, 6.791.700

call just_big_loop

mov ecx, 6.791.701

call big_loop_calling_IsDebuggerPresent

In July 2015, it started to execute sqrt and rol in one of the
big loops in order to vary the instructions. This is presented
in Listing 9.

Listing 9 Big Loops in July 2015
v3 = 199.990;

do

{

result = sqrt(result);
a2 = _ROL__(a2, 96);
—v3;

} while (v3);

ecx, 32.782.721
big_loop

mov
call

In August 2015, the number of iterations sqrt is called is
significantly increased, as can be observed from Listing 10.

Listing 10 Big Loops in August 2015
v5 = 19.999.990,

do

{

result = sqrt(result);
—vV5;
} while (v5);

ecx, 6.791.700
big_loop

mov
call

In September 2015, a test is added after the call of the
function containing the big loop: specifically it tests if the
ECXregister gets to have the value 0 after the execution of the
loop. According to Listing 11, this is achieved by adding the

Anti-emulation trends in modern packers

value of the ECX register to the address of the next function
to be called. In case ECX is zero, the execution will continue
successfully. Otherwise, the execution will be unpredictable,
executing from the computed address.

This seems to be a defense against emulators trying to
bypass the big loops. If an emulator observes the same
instructions being executed over and over again, it can draw
the conclusion that it is executing a garbage big loop and
it can exit the loop early. If this happens, ECX will end up
having a value different than zero as this register is used to
count the iterations decreasingly.

Listing 11 Big Loops in September 2015

mov ecx, 9.999.999
call big_loop

lea eax, sub_4024CF
add eax, ecx

call eax

In November 2015, the big loop is no longer a function
being called, but integrated in the calling code, as illustrated
in the Listing 12.

Listing 12 Big Loops in November 2015

mov edx, 998.261
dec edx

jnz loc_403D36

4 UPA 2

In order to illustrate the evolution of the anti-emulation tech-
niques used by the UPA 2 packer, we monitored the updates
it issued during the past year. This packer was mostly used
by the Upatre downloader. Its first appearance dates to the
beginning of 2015.

4.1 Stack check

Shortly after the process starts its execution, the first anti-
emulation technique is put in place. It consists in checking
the stack address. Specifically, if the last WORD of the value
stored in the ESP register is less than OxFFO0O, then the pro-
gram terminates the execution, as illustrated in Listing 13.

Listing 13 Checking Stack Address

mov eax, 0
add eax, esp
add bx, 1
push OFFh
pop ecx

rol ecx, 8
mov si, ax
cmp si, cx

ja continue

mov eax, offset TerminateThread
push 0

retn

The execution is terminated differently in different sam-
ples:

— execute an int 3, issuing an exception;

— start executing from address 0, causing access violation;

— jump to an address containing invalid instructions, caus-
ing a crash;

— jump to an invalid address, causing an access violation;

— infinitely loop over this check without changing the stack
address;

— return;

In the middle of the year, the ESP register was changed
with EBP and two months later the change was reverted.

Towards the end of the year, the value was increased to
0xFFO1.

Afterwards, the logic was changed so that if the last byte
of ESP is smaller than or equal to 2, then the program returns.

And, in the end, this technique was dropped altogether.

4.2 Flag check

Another anti-emulation technique that checks the state of
the process at the beginning of execution consists in check-
ing whether the ZF flag is set when the process is started.
Listing 14 contains the first 5 instructions executed by the
sample.

Listing 14 Checking ZF Flag

push edx

pop ebx

mov ecx, edx
mov ebp, esp
jz no_anti_1

Since push, pop and mov are the only executed instructions
and they do not change any flags, we can assume this check
allows for an emulator detection. If the ZF flag is set then the
size of the stack is no longer checked.

4.3 Registry state after API calls

Another anti-emulation technique consists in checking
whether the values of particular registers are being changed
after calling specific Windows API functions. This packer
implements this method in three different ways.

First, it initializes the ecx register with the value 2, calls
the GetACP function, and then expects ecx to be different
from zero, as illustrated in Listing 15.

@ Springer

C. V. Litd et al.

Listing 15 Checking Register Value after API Call

mov ecx, 2
call ds : GetACP
test ecx, ecx
jnz no_anti_1
retn

Second, it initializes the ecx register with 0, calls the Get-
SystemDirectoryA function, and expects ecx to be different
from zero (Listing 16).

Listing 16 Checking Register Value after API Call

mov ecx, 0

call eax ; GetSystemDirectoryA
test ecx, ecx

jnz no_anti_3

retn

Third, it initializes ecx with O, calls the function Cre-
ateFileA, and expects ecx to have a value different from 0
(Listing 17).

Listing 17 Checking Register Value after API Call

xor ecx, ecx

mov eax, [eax]

call eax ; CreateFileA
test eax, eax

jnz check_ecx

int 3 ; Trap to Debugger
check_ecx:

test ecx, ecx

jnz no_anti

int 3 ; Trap to Debugger

In all three cases, if the condition is not met, then int 3 is
executed or the program returns.

The GetSystemDirectoryA check is annihilated in one
of the next versions. In Listing 18, although the GetSys-
temDirectoryA check is present, the program executes from
no_anti_2 regardless of the check’s result.

Listing 18 Checking Register Value after API Call

mov edi, offset ReplaceFileA
mov ebx, offset SQLPrepare
add ebx, 1400h

pusha

mov eax, 0

xor eax, eax

add eax, edi

add eax, 2EAh

sub esp, 4

mov [esp+24h+var_24], 190h
push ebx

sub eax, 0C7BB6212h

add eax, 0C7BB6200h

@ Springer

mov eax, [eax]

mov ecx, 0

call eax ; GetSystemDirectoryA
test ecx, ecx

jnz $+6 ; jumps to no_anti_2
no_anti_2:

This check is reintroduced later, but this time ecx is
expected not to have a specific value (Ox12FFBO) in order
for the program to continue its execution (Listing 19). ecx
seems to be initialized with this value by the system before the
program starts its execution. So, the actual check consists in
ensuring that the GetSystemDirectoryA function changes the
value of ecx. Some emulators don’t change the value of ecx
when executing the GetSystemDirectory function and thus
their presence is successfully detected by this technique.

Listing 19 Checking Register Value after API Call

push 17Ch

push ebx

call GetSystemDirectoryA
cmp ecx, 12FFBOh

jnz no_anti_2

int 3 ; Trap to Debugger

In the next versions, the same check applies, but the
GetSystemDirectoryA function is replaced with the GetWin-
dowsDirectoryA function, as can be observed in Listing 20.

Listing 20 Checking Register Value after API Call

mov [esp+28h+uSize], 17Ch
push edi

call GetWindowsDirectoryA
mov edx, 12FFBOh

cmp ecx, edx

jnz no_anti_1

int 3 ; Trap to Debugger

4.4 Return values of API calls

Besides checking the values of registers, the actual returned
value of specific API calls is checked as well. For example,
the UPA 2 packer calls the GetTickCount function and checks
its returned value. If the function returns a value smaller than
or equal to 1, then the program jumps to a wrong address and
crashes, otherwise it continues the execution normally. The
code can be observed in Listing 21.

Listing 21 Checking Return Value of API Calls

mov eax, offset GetTickCount
call dword ptr [eax]

cmp eax, 1

jle return_to_wrong_address

Anti-emulation trends in modern packers

return_to_wrong_address:

add ebx, 11FAh
push ebx
retn

Since the EBX register hasn’t been initialized, the code
will continue to execute from an arbitrary address, thus hav-
ing an unpredictable behavior, but most probably crashing
soon.

The use of GetTickCount is explained as follows. The
GetTickCount function returns the number of milliseconds
that passed from the moment the Operating System was
started. That number is stored as a DWORD, therefore if
a system runs continuously for a period of almost 50 days,
then that number will overflow and restart counting from O.
Assuming the computer is not stopped for a period of one
year, this number will be equal to 0 for a maximum of 7
times and each time it will keep the value 0 only for a mil-
lisecond. Thus, the probability for GetTickCount to return O
in a real system is very low.

In some emulators, however, the GetTickCount function
was adapted to bypass a well-known anti-emulation tech-
nique. It takes advantage by the overhead added by an
emulator in order to detect its presence. Specifically, it con-
sists in comparing the difference between the values returned
by two consecutive calls to GetTickCount with a thresh-
old, which is chosen so that it is higher than the difference
usually obtained on a real system, but lower than the dif-
ference usually obtained on emulators. This anti-emulation
technique could be bypassed by implementing GetTickCount
so that it always returns O or 1, which means that the dif-
ference between two consecutive calls is always 0 and thus
fails to detect the emulator’s presence. This adaptation of
the GetTickCount function made possible the anti-emulation
technique described in this subsection.

4.5 DLL presence and header values

This packer also checks the presence of specific DLL files
and the value of certain fields within their headers.

The offset of the PE header 2, the e_lfanew field from
IMAGE_DOS_HEADER, must match specific values for
the packer to normally continue its execution. For example,
e_lfanew must be:

1. OxEQ, OxFO0, or OxE8 in %system_directory %/mfcsubs.dll
2. 0xEOQ, 0xES8, or 0x20B in %system_directory%/DuSer.dll

For the second example, however, if the value of e_Ifanew
doesn’t match any value from the list, there is one condition

2 http://www.microsoft.com/whdc/system/platform/firmware/
PECOFF.mspx

that can still validate the library and let the program continue
its execution normally: the value located at the offset 0x120
from the beginning of the header / file must be 0x00042000
(in Windows XP, this value matches and it corresponds to
BaseOfData because the address of the PE header is 0xF0) or
0x00024000 (probably BaseOfData in another operating sys-
tem). In case neither e_lfanew nor BaseOfData field matches
the checked values, then the program jumps to an address
from the stack and an exception is generated while executing
the data from there as code.

In newer versions, the checked field is changed from
e_Ifanew to SizeOfCode, which is located in the IMAGE_NT
_HEADERS. A few examples are illustrated further.

First, in %system_directory%/sbe.dll, if SizeOfCode is
smaller than 0x000301FF, then int 3 is executed.

Second, in %system_directory%/qcap.dll, if SizeOfCode
is equal to zero then the program starts executing the code
without decrypting it first; if SizeOfCode has a value smaller
than 0x000201FF then int 3 is executed.

Third, in %system_directory%/catsrv.dll, SizeOfCode
must be one of the following values: 0x00000300, 0x00024
005, 0x00024006, or bigger than 0x000201FE, otherwise the
program crashes.

In even newer examples, first the presence of the library is
checked and only afterwards its corresponding header fields.

In one of the analyzed samples, if %system direc-
tory%/catsrv.dll is not present / could not be opened in read
mode, then int 3 is executed, as illustrated in Listing 22.

Listing 22 Checking DLL Presence

push edx ; "rb"
push ebx ; %system_directory%/catsrv.dll

call dword ptr [eax] ; fopen
test eax, eax

jnz no_anti_3

int 3 ; Trap to Debugger

If SizeOfCode < 0x000206FD, then the code from the
compute_wrong_address label is executed, otherwise - the
code from the compute_correct_address label (Listing 23).

Listing 23 Checking SizeOfCode Value in Various DLLs

mov eax, ebx

sub eax, 10h

add eax, 4Ch

mov eax, [eax] ; eax = e_lfanew

add eax, ebx ; eax = PE header address
push 1Eh

pop esi

sub esi, 2

mov eax, [eax+esi]| ,; eax = SizeOfCode
cmp eax, 206FDh

nop

jle compute_wrong_address

@ Springer

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

C. V. Litd et al.

jmp compute_correct_address

The compute_wrong_address function has the code pre-

sented in Listing 24.

Listing 24 Computing Incorrectly the Address of the Encrypted Buffer

compute_wrong_address:

add esi, SFAh
push esi
retn

The code from compute_wrong_address is used by com-
pute_correct_address too, but not before initializing esi with
encrypted_buffer_address (Listing 25).

Listing 25 Computing Correctly the Address of the Encrypted Buffer

compute_correct_address:

mov esi, offset unk_404COA
xor eax, eax
add esp, 3Ch
jmp compute_wrong_address

Later, the minimum value of SizeOfCode in %sys-
tem_directory%/catsrv.dll is increased to 0x000206FF, prob-
ably following some updates or new versions of the library.

After some time, the tested library is changed to %sys-
tem_directory%/gdi32.dll. If its SizeOfCode is smaller than
or equal to 0x26000, then it tests the library again (a never
ending loop), otherwise it continues with decrypting and exe-
cuting the payload. The code is presented in Listing 26.

Listing 26 Checking SizeOfCode Value in Various DLLs

try_again:

push IMAGE_DOS_HEADER .e_lIfanew

pop eax

add eax, edi

mov eax, [eax] , eax = e_lfanew

add eax, edi ; eax = PE header address
push 1Eh

pop ebx

sub ebx, 2

mov eax, [eax+ebx] ; eax = SizeOfCode
cmp eax, 26000h

jle try_again

ig jmp_to_decrypt

int 3 ; Trap to Debugger

jmp_to_decrypt:
jmp decrypt

Afterwards, the %system_directory%/comctl32.dll is
searched on the system and validated as follows: if Size-
OfCode < 0x24000 then it retries the library validation (a
never ending loop), otherwise it decrypts and executes the
payload.

@ Springer

In the last versions, the packer decrypts and executes its
payload only if a specific system library has its SizeOfCode
between two specified values. Some examples are:

1. %system_directory%/duser.dll - between 0x20400 and
0x90000

2. %system_directory%/wsecedit.dll - between 0x25200
and 0x90000

3. %system_directory%/wuapi.dll - between 0x21400 and
0x90000

The Listing 27 illustrates this behavior for the first exam-
ple, the other two being very similar.

Listing 27 Checking SizeOfCode Value in Various DLLs

mov [esp+30h+var_30], 2Fh
inc [esp+30h+var_30]

inc [esp+30h+var_30]

pop eax

add eax, OBh ; eax = 0x3C
push dword ptr [edi+eax]

pop eax ; eax = e_lfanew
add eax, edi ; eax = PE header address
push 1Eh

pop esi

sub esi, 2 ; esi = OxIC

mov eax, [eax+esi] ; eax = SizeOfCode
jmp loc_402316

loc_402316:

mov edx, 20400h

cmp eax, edx

jg loc_40236C

int 3 ; Trap to Debugger
loc_40236C:

cmp eax, 90000h

ja call_wrong_address

call decrypt

call_wrong_address:

add esi , OFFFFDEF4h
push esi
call [esp+30h+var_30]

If SizeOfCode is smaller than the minimum required, then
int 3 is executed. If it is bigger than the maximum required
then a wrong address is called, resulting in an Access Viola-
tion exception being generated.

Another interesting aspect to note here is the use of
unnecessary spaces at the end of library names or dupli-
cated slashes between the system directory and the library
names, when loading them. An example of such a string is
“%system_directory%//wuapi.dll”. The Operating Systems

Anti-emulation trends in modern packers

can deal with these cases, although it is not documented.
Because of the missing documentation, emulators don’t usu-
ally treat these cases.

SUPA3

UPA 3 is a custom packer used exclusively for the Upatre
downloader. The first samples were spotted in the wild in
November 2013. Unlike the UPA 1 packer, which started
with many different anti-* techniques, the UPA 3 packer
didn’t have neither many nor advanced anti-* techniques in
the beginning. Next, we will present the mechanisms it uses.

5.1 Return values of API calls

It checks whether RegisterClassA returns a non zero value
and whether acmStreamConvert returns the value 5 for spe-
cific values of the parameters, as illustrated in Listing 28.

Listing 28 Checking Return Value of API Call

call ds:RegisterClassA

sub esp, 4

call loc_401000

loc_401000:

and eax, eax

jz exit___loc_4010E9

call sub_40221E

sub_40221E:

xor edi, edi

push 0 s fdwConvert
push 0 ; pash
push has s has
call ds:acmStreamConvert
cmp eax, 5

jz short loc_402236

retn

5.2 Window messages

UPA 3 contains interesting and complex anti-emulation tech-
niques involving window messages, which were introduced
a few days after the first samples were found.

In the first example, the packer creates a window with a
wnd_proc callback function waiting for window messages.
When wnd_proc receives a WM_CREATE message, it cre-
ates a button and sends a BM_CLICK message to the newly
created button, as presented in Listing 29.

Listing 29 Handling WM_CREATE in Window Callback
if (msg == WM _CREATE)

{
hWnd_button = CreateWindowExA (

0, "button", "prerequ",
1342177281, 5, 45, 160, 35,
hWndParent, O, hlnstance, 0);

PostMessageA (hWnd_button,
BM_CLICK, 0, 0);

The BM_CLICK message generates a WM_COMMAND
message, which is received by the wnd_proc function and
handled in Listing 30.

Listing 30 Handling WM_COMMAND in Window Callback
if (Msg == WM.OVMAND)
{
if ((HWND)1Param == hWnd_button)
return decrypt_next_layer ();

This technique is more complicated because the emulator
must know how to handle window messages and how to send
the WM_COMMAND message in case of a MB_CLICK
message with the IParam containing the button handle.

In the second example, the DialogBoxParamW function is
used to create a window with a callback function, as presented
in Listing 31.

Listing 31 Creating Window with Callback Function
DialogBoxParamW (hlInstance ,
(LPCWSTR)0x3E8, 0, DialogFunc, 0);

The callback function (DialogFunc) handles window mes-
sages. In case of a WM_INITDIALOG message, it retrieves
a dialog item having the ID equal to 1001 and sends a
WM_SETFONT message to it, as in Listing 32.

Listing 32 Handling WM_INITDIALOG in Window Callback
if (msg == WM_INITDIALOG)
{

hWnd = GetDlgltem (hDIlg, 1001);
SendMessageW (hWnd,
WM _SETFONT, ::wParam, 1);

When called, the GetDlgltem function generates a WM
_COMMAND message. The DialogFunc callback receives
this message in Listing 33.

Listing 33 Handling WM_COMMAND in Window Callback
if (msg == WMOOMMAND)

{
GetSystemTime(&SystemTime) ;

result = decrypt_next_layer();

@ Springer

C. V. Litd et al.

This WM_COMMAND message is treated in more details
in Listing 34, which presents the corresponding assembly
code.

Listing 34 Handling WM_COMMAND in Window Callback

mov eax, offset SystemTime
push eax

push eax ; IpSystemTime
call ds: GetSystemTime

pop edx

xor eax, eax

mov ax, [edx+2] ; wMonth
add eax, offset unk 404087
push ds: GetModuleHandle A
push offset sub_401912

call decrypt_next_layer

decrypt_next_layer:

mov esi, offset word_402676
mov edi, eax

mov eax, 4

mov ecx, OFh

call decrypt_buffer

push edi

The current month, retrieved from the time structure
returned by the GetSystemTime function, is used to com-
pute where to decrypt the current buffer. The example from
Listing 35 emphasizes this behavior.

Listing 35 Computing the Address for Decrypted Buffer

mov ax, [edx+2] ; wMonth
add eax, offset unk_ 404087
mov edi, eax

This mechanism ensures the sample executes properly
only in a specific month of the year. This behavior is under-
standable for a downloader like Upatre because it uses the
same version of the packer for a few days only. Once the
security vendors add detection for this version of the packer,
Upatre will start using another version of the packer in order
to evade detection.

From the emulator’s point of view, however, this is a prob-
lem because it must detect the samples anytime, not just in
a specific month of the year. This presents difficulties when
debugging as well because the malware analyst must pay
attention and make sure that the date of the system is the
expected one.

In 2014, the mechanism had undergone some changes.
The code can be analyzed in Listing 36.

Listing 36 Window Callback in 2014
if (msg == WM_INITDIALOG)

{
hWnd = GetDIgltem (hWnd, 503);

@ Springer

SendMessageA (
hWnd, WM_SEIFONT, wParam, 1);
}
else
{
while (msg != WMLSEIFONT); //infinite loop
GetSystemTime(&SystemTime);
result = decrypt_next_layer();

Among the changes are the use of another value for the
dialog item ID used by the GetDlIgltem function, and the
infinite loop executed when receiving a message different
from WM_INITDIALOG and WM_SETFONT.

In some of the next packer iterations, it combines the use
of the BM_CLICK message as in the first example, handled
by a callback function registered with the help of the Dialog-
BoxParamW function as in the second example. The relevant
code is illustrated in Listing 37.

Listing 37 Handling BM_CLICK in a callback registered with Dialog-
BoxParamW
DialogBoxParamA (hlInstance ,

(LPCSTR)0x335, 0, DialogFunc, 0);

unsigned int DialogFunc(
HWND hDlg, int msg,
unsigned int wParam, HWND [Param)
{
if (msg == WM_INITDIALOG)
{
hDlgltem_99 = GetDIgltem (hDlg, 99);
SendMessageW (
(HWND) hDlgltem_99 ,
BM_CLICK, 0, 0);
}
if (msg == WM COMMAND)
{
if (wParam == 99)
return decrypt_next_layer ();

In later packer versions, the things get even more compli-
cated as the previous techniques are combined into a single
one and more window messages have to be generated and
processed. The code form Listing 38 helps understanding
the message flow and taken actions.

Listing 38 Combining Techniques

entry_point:
DialogBoxParamA (hlnstance ,
(LPCSTR)Ox1F4, 0, DialogFunc, 0);

unsigned int DialogFunc(

Anti-emulation trends in modern packers

HWND hDlg, int msg,
unsigned int wParam, HWND 1Param)
{
if (msg == WM_INITDIALOG)
{
hDIgltem_501 = GetDlgltem (hDlg, 501);
hDIgltem_504 = GetDlgltem (hDlg, 504);
}
if (msg == WM OMMAND)
{
if (IParam != hDIgltem_504)
return PostMessageA (
hDIgltem_504, BM_CLICK, 0, 0);
if (!(wParam >> 16))
{

decrypt_next_layer ();
}
1
1

Atentry point, a DialogFunc callback is registered for the
newly created window. Immediately after the window is cre-
ated, the callback function receives the WM_INITDIALOG
message and thus calls the GetDlgltem function with the
dialog item ID 501 and then 504, both generating a
WM_COMMAND message.

Atreceiving the WM_COMMAND message, the Dialog-
Func posts a BM_CLICK message with wParam equal
to 0. When the BM_CLICK message gets processed, a
WM_COMMAND message with wParam equal to 0 is gen-
erated, triggering the execution of the next decryption layer.

Later on, an even more advanced technique is put in place.
By sending the message EM_GETLINECOUNT to hEdit_2,
the return value will be 4 because it’s name has 4 lines. This
number is later used to compute the address from which the
execution is about to be continued. Listing 39 presents this
technique.

Listing 39 Computing Next Execution Address

entry_point:
CreateWindowExA (0, "contents",
0, 0, 3300, 1400, 756,
500, 0, O, hInstance, 0);

LRESULT wnd_proc (
HWND hWndParent, UINT Msg,
WPARAM wParam, IPARAM [Param)
{
if (Msg == WM _CRFATE)
{
window_name = "sabcdeaaaa\r\n";
strcat (window_name, "ebubulr\n");
strcat (window_name, "iccasc\r\n");

hEdit_1 = CreateWindowExA (
0, "edit", 0, 0x50010000,
25, 155, 240, 30, hWndParent,
0, hlnstance, 0);

hEdit_2 = CreateWindowExA (
0, "edit", window_name,
0x50010004u, 25, 155, 240, 30,
hWndParent, O, hlnstance, 0);

SendMessageA (hEdit_1, WM_SETTEXT,
0, (IPARAM)"instability");
SendMessageA (hEdit_2 , WM_SETFONT,
(WPARAM) window_name, 1);
}
if (Msg == WM (OMVAND)
{
if ((HWND)1Param == hEdit_1
&& wParam == 0x4000000)
{
nr_lines = SendMessageA (hEdit_2,
EM_GETLINECOUNT, 0, 0);
((void (*)(void)) ((charx*)loc_401273
+ 16 x nr_lines + 1))();

The assembly code that computes the final address is pre-
sented in the Listing 40, the resulted value being 0x401274
+ 0x40 = 0x4012B4.

Listing 40 Computing Next Execution Address

cmp eax, hEdit_1

jnz loc_4012AE

mov eax, [ebp+wParam]

cmp eax, 4000000h

jnz loc_4012AE

push 0 ; [Param

push 0 ; wParam

push OBAh ; Msg ; EM_GETLINECOUNT
push hWnd ; hWnd

call SendMessageA

shl eax, 4

mov ecx, eax

add ecx, (offset loc_401273+1)
call ecx

xor eax, eax

pop ebp

retn 10h

During the next evolution step, the wnd_proc function is
changed completely as can be observed from the Listing 41.

@ Springer

C. V. Litd et al.

Listing 41 Using WM_PARENTNOTIFY Message

int starts_with_value 3 = 3;

void wnd_proc(
HWND hWnd, UINT Msg,
WPARAM wParam, IPARAM [Param)
{
switch (Msg)
{
case WM_INITDIALOG:
LoadLibraryA ("Riched32.d11");
create_3_windows ();

break ;
case WM _QUIT:
PostQuitMessage (0);
break ;
case WM _PARENTINOTIFY:
if (starts_with_value_3 == 1)
decrypt_next_layer (
starts_with_value_3 — 1);
else
—starts_with_value_3;
break ;
default:
DefWindowProcA (hWnd,
Msg, wParam, 1Param);
break ;

At dialog initialization, the callback calls the CreateWin-
dowExA function three times: two times with the “edit” type
and once with the “RichEdit” type. Afterwards, it waits three
WM_PARENTNOTIFY messages before executing further
from the loc_401D3E location, illustrated in Listing 42.

Listing 42 Using EM_LINEFROMCHAR Message

loc_401D3E:

mov ecx, OCAh

push 0 ;IlParam

push 1Dh ;wPram

dec ecx

push ecx ,;Message => EM_LINEFROMCHAR
push hRichEdit_1 ;hWnd
call ds:SendMessageA
mov ecx, 401C4Eh
push eax

test eax, eax

jnz short loc_401D93

The next step consists in sending the EM_LINEFROM-
CHAR message (the code 0xC9) to hRichEdit_1, one
of the three windows created previously inside the cre-

@ Springer

ate_3_windows function. The creation of the hRichEdit_1
window is illustrated in the Listing 43.

Listing 43 Window Creation

window_name = "gitydon\r\n";
strcat (window_name, "abloom\r\n");
strcat (window_name, "ability\r\n\r\n");
strcat (window_name, "aberration\r\n");
strcat (window_name, "abbey\r\n");
strcat (window_name, "kibitz\r\n");
strcat (window_name, "increase\r\n");
strcat (window_name, "evangelist\r");
strcat (window_name, "kicky\r\n");
hRichEdit_1 = (int)CreateWindowExA (
0, "RichEdit", window_name,
0x50810004u, 26, 186, 242,
32, v2, 0, hlnstance, 0);

Then it checks the value returned for the EM_LINE-
FROMCHAR message to be different than zero. It returns
the value 3 in OllyDbg in this particular case because the
character at position Ox1D is on the third line.

In newer samples, the check uses the exact value returned
by the EM_LINEFROMCHAR message.

In even newer samples, the technique is changed com-
pletely again. The Listing 44 details it.

Listing 44 Window Procedure Evolution
if (Msg == WM _CRFATE)

{
hRichEdit = CreateWindowExA (0,

"RichEdit", "_...", 0x40000004, 40,
40, 160, 28, hWnd, O, hInstance, 0);
SendMessageA (hWnd,

WM OOMVAND 0x68u, 105);
SendMessageA (hRichEdit,
EM_FNDWORDBREAK, 0, 15);
for(i = 0;i < 10000;++1)
Sleep(100);
result = 1;

}

if (Msg == WM.OVMAND)
if (wParam == 0x68)
{

SendMessageA (hRichEdit,
EM_SETWORDBREAKPROC, 0,
(IPARAM) wordbreak_callback);

return DefWindowProcA (
hWnd, Msg, wParam, 1Param);

}

int wordbreak_callback (

int al, int a2, int a3, int a4)

Anti-emulation trends in modern packers

char_position = SendMessageA (

hWnd, EM POSFROMCHAR, 0, 0);
DestroyWindow (hWnd) ;
decrypt_next_layer(char_position);
return 10;

At window creation, the window procedure callback sends
two messages: a WM_COMMAND message with wParam
equal to 0x68 and a EM_FINDWORDBREAK message.
After sending these messages, it just sleeps 1000 seconds.

The first message sent by the window procedure callback
- the WM_COMMAND message - is received and processed
by the same window procedure callback. In order to make
sure it’s the same message it sent itself earlier, it checks if
the wParam parameter equals 0x68. If it is, then the callback
sends an EM_SETWORDBREAKPROC message, thus reg-
istering a word break callback: wordbreak_callback.

The second message sent by the window procedure call-
back - the EM_FINDWORDBREAK message - triggers the
wordbreak_callback.

The wordbreak_callback function sends an EM_POS-
FROMCHAR message, that returns a char_position value
equal to Ox7fff in ollyDbg. This value is used to compute the
location from where to execute further.

In the next iterations, the sleeps are removed and the
EM_CHARFROMPOS message is used instead of the
EM_POSFROMCHAR message.

Another change consists in making sure some files don’t
exist before sending the initial WM_COMMAND. This is
performed as illustrated in Listing 45, by checking the return
value of the CreateFile function.

Listing 45 Checking File Non-Existence

if (CreateFileA ("etings.txt",
GENERIC_READ, 0, 0, OPEN_EXISTING,
0, 0) == HANDLE-1)

{
SendMessageA (hWnd,

WM AOMVAND, 0x68, 100);

At the beginning of the year 2015, it returned to basics
and started to use simple techniques similar to the ones used
in the 2013 year. An example is illustrated in Listing 46. The
original code is quite obfuscated with various SendMessage
calls, but the listing presents a simplified version containing
only the relevant commands.

Listing 46 Returning to Simple Tricks

if (msg == WM_INITDIALOG)

{
dlg_item GetDlgltem (hDlg, 0x71);
::wParam = 0x65;

SendMessageW (dlg_item , BM_CLICK, 0, 0);
}

if (msg == WMCOMVAND)
{
if (wParam == 0x71)
{
SendMessageA (hDlg,
WM OOMVAND :: wParam, 0);
}

if (wParam == 0x65)
{
((void (__thiscall x)(WPARAM))
decrypt_next_layer) (::wParam);

The GetDlIgltem function, called with the id equal to 0x71,
is used to generate a WM_COMMAND. When dealing with
this WM_COMMAND, it sends another WM_COMMAND
message with wParam equal to 0x65. Finally, when receiving
the WM_COMMAND with wParam equal to 0x65, it starts
decrypting the next layer.

Listing 47 presents another interesting mechanism. It
sends the TB_INSERTBUTTONW (0x443) message. At the
first execution of the callback, a value is set to Ox10FF while
at the second execution - that specific value is returned. The
importance of this value consists in the fact that the address
from which to execute further on is computed with its help.

Listing 47 Using TB_INSERTBUTTONW Message
if (Msg == WM _CRFATE)
{
SendMessageA (hWnd, 0x467, 0, 0);
return 0;

}

if (Msg == 0x467)
{
SendMessageA (: :hWnd,
TB_INSERTBUTTONW, 0, 0x10FFu);
for (i = 0x48Du; i < 0x4C9u; ++i)
SendMessageA (hWnd, i, i, 0);
}

if (Msg == 0x496)
{
v8 = SendMessageA (::hWnd,
TB_INSERTBUTTONW, 0, 0x307Fu);
decrypt_next_layer(v8);
1

@ Springer

C. V. Litd et al.

On the next iteration of this trick, the value for TB_INSER
TBUTTONW was changed and a check was added in order
to make sure that the file “Desktopini” doesn’t exist. It is
illustrated in Listing 48.

Listing 48 Checking Existence of Desktopini File

IpFileName = "Desktopini";
if (CreateFileA (IpFileName, 0x80000000u,
lu, 0, 3u, 0x80u, 0) == (HANDLE) — 1)
{
SendMessageA (hWnd, 0x46Cu, 0, 0);
}

In the newer samples, the message used to keep the value
for address computation was changed from TB_INSERTBU
TTONW (0x443) to EM_SETEVENT- MASK (0x445), as
can be observed in Listing 49.

Listing 49 Using EM_SETEVENTMASK Message
if (Msg == WM_CREATE)
{

::hWnd = CreateWindowExXA (0O, "richedit",
&byte_405133, 0x40000004u, 4, 94,
600, 300, hWnd, O, hlnstance, 0);

SendMessageA (::hWnd, EM_SETEVENTMASK,
0, 0x101u);

for(i = 1173; (signed int)i < 1225; ++i)
SendMessageA (hWnd, i, i, 0);

1

if (Msg == 1174)
{
v9 = SendMessageA (::hWnd,
EM_SETEVENIMASK, 0, 0);
decrypt_next_layer(v9);
}

In the middle of 2015, the UPA 3 packer switched to a
new mechanism, illustrated in Listing 50.

Listing 50 Using SetFocus Message and EditControl IDs
if (Msg == WM _CRFATE)
{
hEdit_1 = CreateWindowExA (
0, "EDIT", &lpWindowName,
0x40000000u, 300, 35, 300, 30,
hWnd, (HMENU)4, hlnstance, 0);
hRich_edit_1 = CreateWindowExA (
0, "richedit", &pWindowName,
0x40000004u, 5, 95, 600, 300,
hWnd, O, hlnstance, 0);
SetFocus (hEdit_1);
1

if (Msg == WM.QOMMAND)

@ Springer

{
if (wParam == 4)
{
sub_403610(hWnd, 4);
return 0;
}
1

int sub_403610(HWND hWnd, int a2)
{
UINT v2;
SendMessageA (hRich_edit_1, 0x445u,
0, a2 + 1537);
v2 = 1172;
do
{
SendMessageA (hWnd, v2, v2, 0);
++v2;
} while ((int)v2 < 1226);
1

if (Msg == 1173)
{
wanted_value = SendMessageA (
hRich_edit_1, 0x445u, 0, 0);
}

if(Msg == 1174)

{
DestroyWindow (hWnd) ;
decrypt_next_layer(wanted_value);

}

Let’s dissect the content of the Listing 50 step by step. In
the beginning, in the call to CreateWindowExA, from List-
ing 51, the tenth parameter (which has the value 4 in this case)
is the identifier of this edit control. This identifier is used later,
when a WM_COMMAND message, generated by SetFocus
(hEdit_1), is received. Next, it uses the previous technique
with the EM_SET EVENTMASK (0x445) message.

Listing 51 Creating EditControl with Specific ID

hEdit_1 = CreateWindowExA (0, "EDIT",
&byte_405907 , 0x40000000u, 300, 35,
300, 30, hWnd, (HMENU)4, hlnstance, 0);

This technique is changed soon by generating the WM_
COMMAND in another form. If previously the SetFo-
cus function was used, now the SendMessageA(hEdit_1,
WM_SETFOCUS, 0, 0) is executed. The callback for the
WM_COMMAND generated by WM_SET- FOCUS is dif-
ferent as well. It initializes wanted_value with the high
word of the wParam dword (wParam >> 16), which corre-
sponds to the control-defined notification code. If it is not

Anti-emulation trends in modern packers

equal with the id of hEdit_1, it defaults to 0x100. After
the WM_SETFOCUS message is processed, wanted_value
contains the value 0x100. The next step consists in calling
the CreateWindowEXA function twice, as illustrated in List-
ing 52.

Listing 52 Calling CreateWindowExA with Specific IDs

CreateWindowExA (0, "edit", byte_406871,
0x40000000u, 300, 5, 10, 32, hWnd,
(HMENU)3, hlnstance, 0);

CreateWindowExA(0, "button", "Ok",
0x40000000u, 505, 405, 100, 31, hWnd,

(HMENU)7, hlnstance, 0);

Each CreateWindowExA generates a WM_PARENT-
NOTIFY message with the identifier of the child window,
HIWORD(wParam), being equal to the previously men-
tioned identifier: 3 for the first CreateWindowExA and 7
for the second one. When receiving the WM_PARENT-
NOTIFY message, the callback will add the identifiers to
wanted_value, resulting the value 0x100 + 0x3 + Ox7 =
0x10A. In the end, the value from EM_SETEVENTMASK
and a constant are added to wanted_value, the final result
being passed to the decrypt_next_layer function. The piece
of code achieving this in presented Listing 53.

Listing 53 Computing Needed Value
if (Msg == WM_CREATE)
{
hEdit_1 = CreateWindowExA (0, "edit",
0, 0x40000000u, 300, 60, 300, 32,
hwWnd, (HMENU)S5, hlnstance, 0);
wanted_value = 0x96u;
SendMessageA (hWnd, 0x478u, 0, 0);

hRichEdit = CreateWindowExA (
0, aRichedit, &pWindowName,
0x40000004u, 5, 105, 520, 330,
hWnd, (HMENU)4, hlnstance, 0);
}

if (Msg == 0x478)
{ for (i = 0x490u;
| PostMessageA (hWnd, i, 0, i + 1);
éendMessageA(hEdit_l , WML_SETFOCUS, 0, 0);
}

i < 0x4C6u; ++1)

if (Msg == WM_PARENINOTIFY)
{

wanted_value += (wParam >> 16);

if ((wParam >> 16) == 3)
SendMessageA (hRichEdit,
0x443u, 0, O0x10E8u);

}

if (Msg == WM.QOMMVAND)
{

wanted_value = wParam >> 16;

}

if (Msg == 0x49C)
{
vO = SendMessageA (hRichEdit,
0x443u, 0, 0x3FOu);
v8 = wanted_value;
for(j = 128; j > 0; —j)
v8 += j;
wanted_value = v9 + v8;

}

if (Msg == 0x4A2)
{

decrypt_next_layer(wanted_value);

}

With the passing of time the code gets simplified a little.
For example, in August 2015, it looks like in the Listing 54. It
begins with a trick from the previously described mechanism:
CreateWindowExA generates a WM_PARENTNOTIFY
with the identifier of the child window, HTWORD(wParam),
being equal to the identifier. This is executed multiple times.
The newly added part consists in using the LB_INIT- STOR-
AGE message to return a value. The code is illustrated in
Listing 54.

Listing 54 Using LB_INITSTORAGE Message

wanted_value += SendMessageA (hWnd,
LB_INITSTORAGE, 0x7D00Ou, 0xDO07u);

In this cases, the returned value is 0x7D00. The wanted_
value is computed and then used in the function that decrypts
the next layer.

The interesting part here is that not sending the WM_
PAINT message causes a jump to the decryption function,
whose execution causes a crash because the wanted_value
variable is not properly initialized. The Listing 55 illustrates
this mechanism.

Listing 55 Execution Flow for the Last Variants of the UPA3 Packer
if (Msg == WM _CRFATE)
{

wanted_value = 0;

CreateWindowExA (,,,,,,,,,4,.);
CreatewindowEXA(299999 9% ,C9 9’);
CreateWindowExA(,,,,,,,,,0,,);

@ Springer

C. V. Litd et al.

CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,
CreateWindowExA(,,,,,,,,,

}

W P> W —0ooda oo

if (msg == WM _PARENINOTIFY)
{
wanted_value += wParam >> 16;
if ((wParam >> 16) == 5)
{
wanted_value += SendMessageA (hWnd,
LB_INITSTORAGE, 0x7D00u, 0xDO07u);
}
else
{
if ((wParam >> 16) == 9)
PostMessageA (hWndParent, 0x78u,
O0xFFFFu, 0);
}
}

if (msg == WM_PAINT)

{
BeginPaint(hWndParent, &Paint);
goto LABEL_18;

}

if (msg == 0x78)

{
LABEL _18:
decrypt_next_layer (wanted_value);

This mechanism was kept as part of the packer until the
end of year, only small changes being applied here and there:
the numbers used for the identifiers, the value used for the
LB_INITSTORAGE message.

6 Conclusions
6.1 Anti-emulation techniques

The presented anti-emulation techniques differ when it
comes to the amount of work required by the emulators

@ Springer

to patch them and by the malware creators to bypass these
patches.

The following anti-emulation techniques require a high
effort in order to be fixed in the emulators, but once it’s done,
the packer creators cannot change them easily to evade emu-
lators again. After a period of time it will be of no use to
keep them in the packer code because they can easily trigger
detection and not stop the emulators any more.

TLS callbacks
FastPebLockRoutine callbacks
SecureMemoryCache callbacks
TopLevelExceptionFilter callbacks
window creation callbacks
message handling

S e

The medium difficulty for fixing the emulators comes
with the medium difficulty for the packer creators to change
some characteristics of the mechanism in order to bypass the
patches issued by the emulators. The following techniques
fall within this category:

. PEB structure fields
library header values
. rare instructions

. window creation

For example, imagine an emulator that can be bypassed by
searching a not implemented field within the PEB structure.
In this case, the emulator can be fixed to properly implement
that field. Unfortunately, packer developers can find another
PEB structure component which is improperly implemented
or not implemented at all to use against the newly updated
emulator.

Similarly, adding a rare instruction to the set of instruc-
tions the emulator implements solves the issue only tem-
porarily until the packer creators find another rare instruction
that is not implemented in the same emulator.

The techniques listed below are part of the category
according to which both patching the emulators and bypass-
ing the patch are easily performed.

. rare API functions

. return values of API functions

. register values changed by API function
. rare library presence

B W =

Fixing and bypassing the use of rare API function calls is
even easier. The packer just calls an API without checking
the return value as in the previous technique. To fix this, the
emulator can implement a function with that name by simply
returning the value 0, while the packer creators just change
the function.

Anti-emulation trends in modern packers

While most anti-emulator techniques requires the same
effort (high, medium or low) for both emulator and packer
writers, there are some which don’t meet this requirement:
the usage of big loops and the usage of time / logic bombs.
Both are hard to fix in an emulator and easy to implement in
a packer

Regarding the usage of big loops, an emulator can’t afford
to execute a sample for a long period of time, which is
required to bypass a big loop. Even more, an emulator is
slower on execution than a real system. At the same time,
packer creators will not have to do a complicated work to
change a big loop so thatitis no longer detected and bypassed
by the emulator.

Similarly, adding a time / logic bomb is easily achieved,
while finding and bypassing it - hard.

6.2 UPA packers strategies

The UPA 1 packer started with multiple and various complex
anti-emulation techniques, encompassing rare instructions
and functions, API result checks, PEB checks, big loops, as
well as various callbacks for FastPebLockRoutine, Secure-
MemoryCache, TopLevelExceptionFilter, TLS, and window
creation. As a response to emulators implementing the miss-
ing instructions, API functions, and callback mechanisms, it
started to remove them one by one, remaining, in the end,
mainly with big loops, containing simple but varying API
calls or / and instructions.

The UPA 2 packer performed, in its beginnings, some
checks on the state of the stack and on the values of the flags,
but understood fairly fast that these are not reliable ways
for emulator detection. Maturing, it started to rely heavily
on checking that the values of registers are changed accord-
ingly after specific API calls and that specific libraries are
present on the system and have correct values for their spe-
cific header fields. Although these mechanisms are easily
fixed in emulators, packer writers can also easily change the
checked API function or register in case of the first technique
and the library or header field in case of the second technique.
The only solution to fix this problem generically would be
implementing correctly all the libraries and API functions in
the emulator, which is not feasible.

The UPA 3 packer individualizes by using almost exclu-
sively mechanisms involving window creation and message
handling. It started with rather simple techniques, compli-
cating them with a fast pace. In the end, however, it ended
up returning to the simple ones, but obfuscating the code
implementing them so that detection is harder to add on the
anti-emulation technique itself.

The simplicity, from the very beginning, of the UPA 2
packer as well as the simplification of the execution flow
we witnessed by monitoring the evolution of the other two,
lead us to the idea that packer creators are trying to reach

an equilibrium between the complexity of the behavior and
the simplicity of the aspect of the developed anti-emulation
techniques. In this way, two goals are achieved.

First, if anti-emulation techniques are hidden in plain sight
by having the looks of simple pieces of code achieving simple
tasks makes it harder for the malware researchers to spot and
bypass them.

Second, by ensuring the emulation techniques are com-
posed of operations found in many genuine use cases, the
malware creators prevent the malware researchers to add
detection to the anti-emulation technique itself as this would
cause false positives. Many genuine applications use big
loops with common API calls and instructions (UPA 1),
library checks (UPA 2), window creation and message han-
dling (UPA 3).

References

1. Branco, R.R., Barbosa, G.N., Neto, P.N.: Scientific but not academ-
ical overview of malware anti-debugging, anti-disassembly and
anti-vm technologies. Blackhat, Las Vegas (2012)

2. Quist, D., Smith, V.: Covert debugging circumventing software
armoring techniques. Black Hat Briefings, Las Vegas (2007)

3. Issa, A.: Anti-virtual machines and emulations. J. Comput. Virol.
8(4), 141-149 (2012). doi:10.1007/s11416-012-0165-0

4. Chubachi, Y., Aiko, K.: Tentacle: Environment-sensitive malware
palpation

5. Ferrie, P.: Anti-unpacker tricks—part one. Virus Bull. 4 (2008).
http://www.virusbtn.com/pdf/magazine/2008/200812.pdf

6. Yason, M.V.: The art of unpacking (2007). Retrieved 12 Feb 2008

7. Tan, X.: Anti-unpacker tricks in malicious code. In: Proceedings
of 10th Annual AVAR International Conference (2007)

8. Ferrie, P.: The ultimate anti-debugging reference, p 14. Tech. rep.
(2011)

9. Falliere, N.: Windows anti-debug reference (2007). Retrieved 1 Oct
2007

10. Gao, S., Lin, Q., Xia, M., Yu, M., Qi, Z., Guan, H.: Debugging clas-
sification and anti-debugging strategies. In: Fourth International
Conference on Machine Vision (ICMV 11), pp. 83503C-83503C.
International Society for Optics and Photonics (2011)

11. Chen, X., Andersen, J., Mao, Z. M., Bailey, M., Nazario,
J.: Towards an understanding of anti-virtualization and anti-
debugging behavior in modern malware. In: The 38th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2008, June 24-27,2008, Anchorage, Alaska, USA,
pp. 177-186 (2008)

12. Shields, T.: Anti-debugging—a developers view. Veracode Inc.,
USA (2010)

13. Qi, Z., Li, B., Lin, Q., Yu, M., Xia, Mingyuan, Guan, Haib-
ing: SPAD: software protection through anti-debugging using
hardware-assisted virtualization. J. Inf. Sci. Eng. 28(5), 813-827
(2012)

14. Yi, T., Zong, A., Yu, M., Gao, S., Lin, Q., Yu, P, Ren, Z., Qi,
Z.: Anti-debugging framework based on hardware virtualization
technology. In: ICRCCS’09 International Conference on Research
Challenges in Computer Science, IEEE, pp. 218-220 (2009)

15. Linn, C., Debray, S.K.: Obfuscation of executable code to improve
resistance to static disassembly. In: Proceedings of the 10th ACM
Conference on Computer and Communications Security, CCS
2003, ACM, Washington, DC, October 27-30, 2003, pp. 290-299

@ Springer

http://dx.doi.org/10.1007/s11416-012-0165-0
http://www.virusbtn.com/pdf/magazine/2008/200812.pdf

C. V. Litd et al.

21.

Aycock, J., deGraaf, R., Jacobson Jr., M.: Anti-disassembly using
cryptographic hash functions. J. Comput. Virol. 2(1), 79-85 (2006)
Kiriigel, C., Robertson, W.K., Valeur, F., Vigna, G.: Static disassem-
bly of obfuscated binaries. In: Proceedings of the 13th USENIX
Security Symposium, August 9-13 2004, San Diego, CA, USA,
pp- 255-270 (2004)

Ferrie, P.: Attacks on virtual machine emulators. Symantec Adv.
Threat Res. (2008)

Ferrie, P: Attacks on more virtual machine emulators. Symantec
Technol. Exch. 55 (2007)

Ormandy, T.: An empirical study into the security exposure to
hosts of hostile virtualized environments. 2007. Ce court article
de recherche analyse la sécurité de quelques solutions de virtuali-
sation, dont certaines traitées dans mon mémoire. Lauteur analyse
la robustesse et la résilience des applications testées (2007)
Reuben, J.S.: A survey on virtual machine security, vol. 2,
p 36. Helsinki University of Technology. http://www.tml.tkk.fi/
Publications/C/25/papers/Reuben_final.pdf (2007)

@ Springer

22.

23.

24.

25.

26.

Danny, Q., Smith, V.: Detecting the presence of virtual machines
using the local data table. Offens. Comput. (2006)

Lau, B., Svajcer, V.: Measuring virtual machine detection in mal-
ware using DSD tracer. J. Comput. Virol. 6(3), 181-195 (2010)
Raffetseder, T., Kriigel, C., Kirda, E.: Detecting system emulators.
In: Information Security, 10th International Conference, ISC 2007,
Valparaiso, Chile, October 9-12, pp. 1-18 (2007)

Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulat-
ing emulation-resistant malware. In: Proceedings of the 1st ACM
workshop on Virtual machine security, pp. 11-22. ACM (2009)
ODea, H.: The Modern Roguemalware with a Face. In: Proceedings
of the Virus Bulletin Conference (2009)

http://www.tml.tkk.fi/Publications/C/25/papers/Reuben_final.pdf
http://www.tml.tkk.fi/Publications/C/25/papers/Reuben_final.pdf

	Anti-emulation trends in modern packers: a survey on the evolution of anti-emulation techniques in UPA packers
	Abstract
	1 Introduction
	2 Related work
	2.1 Anti-* techniques
	2.2 Anti-debugging techniques
	2.3 Anti-disassembly techniques
	2.4 Anti-virtual machine techniques
	2.4.1 Anti-emulation techniques

	3 UPA 1 packer
	3.1 Rare instructions
	3.2 Rare API functions
	3.3 PEB structure
	3.4 TLS callbacks
	3.5 Windows API results
	3.6 FastPebLockRoutine callback
	3.7 SecureMemoryCache callback
	3.8 TopLevelExceptionFilter callback
	3.9 Window creation callback
	3.10 Big loops

	4 UPA 2
	4.1 Stack check
	4.2 Flag check
	4.3 Registry state after API calls
	4.4 Return values of API calls
	4.5 DLL presence and header values

	5 UPA 3
	5.1 Return values of API calls
	5.2 Window messages

	6 Conclusions
	6.1 Anti-emulation techniques
	6.2 UPA packers strategies

	References

