
5

Automatic Reverse Engineering of Script Engine Binaries

for Building Script API Tracers

TOSHINORI USUI, NTT Secure Platform Laboratories/Institute of Industrial Science,

The University of Tokyo, Japan

YUTO OTSUKI, TOMONORI IKUSE, YUHEI KAWAKOYA, MAKOTO IWAMURA, and
JUN MIYOSHI, NTT Secure Platform Laboratories, Japan

KANTA MATSUURA, Institute of Industrial Science, The University of Tokyo, Japan

Script languages are designed to be easy-to-use and require low learning costs. These features provide attackers options to

choose a script language for developing their malicious scripts. This diversity of choice in the attacker side unexpectedly

imposes a significant cost on the preparation for analysis tools in the defense side. That is, we have to prepare for multiple

script languages to analyze malicious scripts written in them. We call this unbalanced cost for script languages asymmetry

problem.

To solve this problem, we propose a method for automatically detecting the hook and tap points in a script engine binary

that is essential for building a script Application Programming Interface (API) tracer. Our method allows us to reduce the

cost of reverse engineering of a script engine binary, which is the largest portion of the development of a script API tracer,

and build a script API tracer for a script language with minimum manual intervention. This advantage results in solving

the asymmetry problem. The experimental results showed that our method generated the script API tracers for the three

script languages popular among attackers (Visual Basic for Applications (VBA), Microsoft Visual Basic Scripting Edition

(VBScript), and PowerShell). The results also demonstrated that these script API tracers successfully analyzed real-world

malicious scripts.
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1 INTRODUCTION

The diversity of script languages creates a blind spot for malicious scripts to hide from analysis and detection.
Attackers can flexibly choose a script language to develop a module of their malicious scripts and change scripts
for developing another module of them. However, we (security side) are not always well-prepared for any script
languages since the development of analysis tools for even a single script language incurs a certain cost. We call
this gap of costs between attackers and defenders the asymmetry problem. This asymmetry problem provides
attackers an advantage in evading the security of their target systems. That is, an attacker can choose one script
language for which a target organization may not be well-prepared to develop malicious scripts for attacking
the system without detection.

One approach for solving this asymmetry problem is focusing on system-level monitoring such as Windows
Application Programming Interfaces (APIs) or system calls. We can universally monitor the behavior of malicious
scripts no matter what script languages the malicious scripts are written in if we set hooks for monitoring at the
system-level. As long as malicious scripts run on a Windows platform, it has to more or less depend on Windows
APIs or system calls to perform certain actions. If we set hooks on each API and monitor the invocations of those
APIs from malicious scripts, we can probably comprehend the behavior of these scripts. However, this system-
level monitoring approach is not sufficient from the viewpoint of analysis efficiency because some script API calls
do not reach any system APIs, such as string or object operations. That is, we do not always capture the complete
behavior of malicious scripts running on the platform. This lack of captures results in partial understanding of
malicious scripts and leads to underestimating the threat of such scripts.

Another approach for malicious script analysis is focusing on a specific language and embedding monitor-
ing mechanisms into a runtime environment of the script. This approach resolves the semantic gap problem
mentioned above but requires deep domain knowledge to develop a monitoring tool. For example, we have to
know both the specifications of a script language and the internal architecture of the script engine to develop a
dynamic analysis tool for the script. In addition, this approach supports only a target script language. That is,
we need to develop an analysis tool for each script language separately.

In summary, we (security side) need an approach universally applicable for any script languages and fine-
grained enough for analyzing the detailed behavior of a malicious script. However, previous studies satisfied
only either of these requirements at the same time.

To mitigate the gap between attackers and defenders, we propose a method of generating script API tracers
with a small amount of human intervention. The basic idea of our method is to eliminate the knowledge of
script engine internals from the requirements for developing analysis tools for a script language. Instead, we
complement this knowledge with several test programs written in the script language (test scripts) and run them
on the script engine for differential execution analysis [8, 57] to clarify the local functions corresponding to the
script APIs, which are usually acquired with the manual analysis of the script engine. Bravely speaking, our
method allows us to replace the knowledge of script engine internals with one of the specifications of the script
for writing test scripts.

Our method is composed of five steps: execution trace logging, hook point detection, tap point detection,
hook and tap point verification, and script API tracer generation. The most important function of our method
is detecting points called hook points in which the method inserts hooks to append code to script engines for
script analysis as well as points called tap points, which are memory regions logged by the code for analysis. Our
method first acquires branch traces by executing manually crafted scripts called test scripts, each of which only
calls a specific script API of the analysis target. Our method then obtains hook and tap points that correspond to
the target script API by analyzing the obtained branch trace with the differential execution analysis-based hook
point detection method. By inserting hooks into the hook points that dump the memory of the tap points to logs,
our method generates a script API tracer.
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Note that we define a script API as a callable functionality provided by a script engine. For example, each built-
in function and statement of Visual Basic for Applications (VBA) and Microsoft Visual Basic Scripting Edition
(VBScript), such as CreateObject and Eval, and commandlets (Cmdlets) of PowerShell, such as Invoke-Expression,
are script APIs.

A challenge in this research was efficiently finding the local function that corresponds to the target script API
from the large number of local functions of a script engine binary. We addressed this challenge by emphasiz-
ing the local function corresponding to the target script API as the difference in branch traces of two scripts
that call the target script API different times. To achieve this differentiation, we modified the Smith-Waterman
algorithm [44] borrowed from bioinformatics, which finds a similar common subsequence from two or more
sequences, to fit it to this problem.

Our method does not allow us to directly fulfill the second requirement, i.e., universal applicability. However,
we believe that our method allows us to reduce the cost of developing an analysis tool for each script language.
Therefore, we can lower the bar for preparing analysis tools for any script languages.

We implemented a prototype system that uses our method called STAGER, a script analyzer generator based
on engine reversing, for evaluating the method. We conducted experiments on STAGER with VBA, VBScript,
and PowerShell. The experimental results indicate that our method can precisely detect hook and tap points and
generate script API tracers that can output analysis logs containing script semantics. The hook and tap points are
detected within a few tens of seconds. Using the STAGER-generated script API tracers, we analyzed real-world
malicious scripts obtained from VirusTotal [1], a malware sharing service for research. The output logs showed
that the script API tracers could effectively analyze malicious scripts in a short time. Our method enables the
generation of a script API tracer for proprietary script languages for which existing methods cannot construct
analysis tools. It can therefore contribute to providing better protection against malicious scripts.

Our contributions are as follows.

—We first propose a method that generates a script API tracer by analyzing the script engine binaries.
—We confirmed that our method can accurately detect hook and tap points within realistic time through

experiments. In addition, our method only requires tens of seconds of human intervention for analyzing
a script API.

—We showed that the script API tracers generated with our method can provide information useful for
analysts by analyzing malicious scripts in the wild.

This article is an extended version of our previous work [48].

2 BACKGROUND AND MOTIVATION

2.1 Motivating Example

Our running example is a malicious script collected from VirusTotal, and its analysis logs acquired using several
different script analysis tools. Note that the script analysis tools in this section include all tools that can extract
the behavior of scripts regardless of whether they were explicitly designed to analyze scripts. Therefore, system
API tracers are included in the script analysis tools in the subsequent sections.

Figure 1 shows a malicious script and acquired analysis logs corresponding to it. The upper left, Figure 1(a)
shows an excerpt of this malicious script that has more than 1,000 lines of code. As shown in the figure, the
malicious script is heavily obfuscated; thus, static analysis is difficult. The upper right, Figure 1(b) shows the
deobfuscated script obtained from manual analysis. Since analysts can easily comprehend the behavior of the
malicious script, it would be ideal as the analysis log. However, manually analyzing such malicious script is
tedious and time consuming and is sometimes nearly impossible depending on the heaviness of the obfuscation.
The lower left, Figure 1(c) shows an excerpt of the system API trace log obtained by attaching a system API tracer
called API Monitor [5] to the script engine process. This log contains a large number of system API calls that
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Fig. 1. Obfuscated malicious script and its analysis logs acquired from several different script analysis tools.

are both relevant and irrelevant to the malicious script. The irrelevant calls are involved in the script engine.
Some system API calls that are relevant to remote procedure calls (e.g., component object model (COM) and
Windows Management Instrumentation (WMI)) by the malicious script and the ones that are only handled in
the script engine (e.g., eval) do not appear in the log. These prevent analysts from comprehending the behavior
of the malicious script; therefore, the system API tracer is not appropriate for analyzing malicious scripts. The
lower right, Figure 1(d) shows the script API trace log that we aim to create with our method. This log has similar
semantics to the one from manual analysis in which analysts can comprehend its behavior through it. Therefore,
script API tracers are essential for malicious script analysis. However, building such script API tracer is difficult
as discussed in detail in Section 2.3.3. Thus, our goal is to propose a method for easily and systematically building
script API tracers that can acquire such logs.

2.2 Requirements of Script Analysis Tool

We clarify the three requirements that script analysis tools should fulfill from the perspective of malicious script
analysis.

(1) Universal applicability. Attackers use various script languages to create their malicious scripts. Hence,
methods for constructing script analysis tools (hereafter, construction methods) should be applicable to various
languages with diverse language specifications.
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(2) Preservability of script semantics. When analyzing scripts, the more output logs lose script semantics, the less
information analysts can obtain from the logs. Therefore, construction methods should preserve script semantics
to provide better information for analysis.

(3) Binary applicability. When constructing script analysis tools of script engines, which are proprietary soft-
ware (we call them proprietary script engines), their source code is not available. Because attackers often use
such proprietary script languages, it is necessary for construction methods to be applicable to binaries.

We also discuss what form of logs should be output with script analysis tools. As mentioned in requirement (2),
the logs should preserve script semantics. That is, logs that can reconstruct the script APIs, and their arguments
that the target script used are desirable. For example, when a script executes CreateObject(WScript.Shell), the
corresponding analysis log should contain the script API CreateObject and its argument WScript.Shell. A script
API tracer generated with our method outputs such logs.

2.3 Design and Problem of Script Analysis Tool

2.3.1 Script-level Monitoring.

Design. Script-level monitoring inserts hooks directly into the target script. Since malicious scripts are gener-
ally obfuscated, it is difficult to find appropriate hook points inside scripts that can output insightful information
for analysts. Therefore, hooks are inserted using a hook point-free method, i.e., by overriding specific script
APIs. Listing 1 shows a code snippet that achieves script-level monitoring of a script API eval in JavaScript. In
this code, a hook is inserted by overriding the eval function (line 2), which inserts the code for analysis that
outputs its argument as a log (line 3).

Problem. There are two problems with script-level monitoring: applicability and stealthiness. Since this design
requires overriding script APIs, it is only applicable to the script languages that allow overriding of the built-
in functions. Therefore, it does not fulfill the requirement of language independence mentioned in Section 2.2.
This design is not sufficiently practical for malicious script analysis because few script languages support such
a language feature.

Listing. 1. Example of script-level monitoring implementation.

2.3.2 System-level Monitoring.

Design. System-level monitoring inserts hooks into system APIs and/or system calls for monitoring their in-
vocation. It then analyzes scripts by executing the target script while observing the script engine process.

Problem. System-level monitoring causes a problem of a semantic gap due to the distance between the hook
points in a system and the target scripts. There are two specific problems caused by a semantic gap: avalanche
effect and semantic loss. The avalanche effect is a problem that makes an observation capture a large amount of
noise, which occurs when one or more layers exist between an observation target and an observation point. Ralf
et al. [23] referred to the avalanche effect caused by the existence of the COM layer, and we found that that of
the script engine layer also causes the avalanche effect.

The main concern with semantic loss is that it decreases information useful for analysts. For example, a script
API Document.Cookie.Set, which has the semantics of setting cookies in the script layer, loses some semantics in
the system API layer because it is just observed as WriteFile. For these reasons, system-level monitoring does
not fulfill the requirement of the preservability of script semantics mentioned in Section 2.2.
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Table 1. Summary of Requirements Fulfillment with Each Design

Design (1) Universal (2) Semantics (3) Binary
Script-level ✗ ✓ ✓

System-level ✓ ✗ ✓
Script engine-level ✓ ✓ ✗

Proposed ✓ ✓ ✓

2.3.3 Script Engine-level Monitoring.

Design. Script engine-level monitoring inserts hooks into specific functionalities in script engines. Because
inserting hooks into script engines requires deep understanding of its implementation, there are few methods
that can obtain such knowledge. One is analyzing script engines by reading source code or reverse-engineering
binaries. Another is building an emulator to obtain a fully understood implementation of the target script engine.
Unlike script-level monitoring, script engine-level monitoring is independent of language specifications. It also
does not cause a semantic gap, unlike system-level monitoring.

Problem. The problem with this design is its implementation difficulty. Although this design may be easily
achieved if a script engine provides interfaces for analysis such as Antimalware Scan Interface (AMSI) [34], this
is just a limited example. In general, a developer of analysis tools with this design has to discover appropriate
hook and tap points for inserting hooks into the target script engine binary.

For open source script engines, we can find hook and tap points by analyzing the source code. However, only
the limited script languages have their corresponding script engines whose source code is available. In addition,
even source code analysis requires certain workloads.

Moreover, obtaining the hook and tap points for proprietary script engines requires reverse-engineering, and
there is no automatic method for this. In addition, manual analysis requires skilled reverse-engineers and unre-
alistic human effort. Therefore, this design does not fulfill the requirement of binary applicability mentioned in
Section 2.2.

2.4 Approach and Assumption

Table 1 summarizes how each design fulfills the requirements mentioned in Section 2.2. As mentioned in the
previous section, neither script-level nor system-level monitoring can fulfill all the requirements. It is also, in
principle, difficult for them to fulfill the requirements through their improvement. The problem with the binary
applicability of script engine-level monitoring will be solved if automatic reverse-engineering of script engines
is enabled. Therefore, our approach is to automatically obtain information required for hooking by analyzing
script engine binaries, which makes it applicable to binaries.

When analyzing script engine binaries, we assume knowledge of the language specifications of the target
script. This knowledge is used for writing test scripts that are input to script engines during analysis. We do
not assume knowledge of internal implementation of the target script engines. Therefore, no previous reverse-
engineering of the target script engines is required.

2.5 Formal Problem Definition

A script engine binary B is modeled as a tuple (M,C ) where M is a set of memory blocks associated with E, and
C is a set of code blocks that implements B. Here, let a, ... ∈ A be a set of the script APIs of the observing targets,
ia , ... ∈ IA ⊂ C be their corresponding implementation, and ra , ... ∈ RA ⊂ M be arguments of the script APIs, the
problem is finding IA and RA fromC , M , and A, which is, in general, difficult. Therefore, our goal is to provide a
map f : M ×C ×A→ IA × RA.
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Fig. 2. Overview of our method.

3 METHOD

3.1 Overview

Figure 2 shows an overview of our method. The main purpose of our method is automatically detecting hook
and tap points by analyzing script engine binaries. The method uses test scripts that are input to the target script
engine and executed during dynamic analysis of the engine. These test scripts are manually written before using
our method.

As mentioned above, our method is composed of five steps: execution trace logging, hook point detection, tap
point detection, hook and tap points verification, and script API tracer generation. The execution trace logging
step first acquires execution traces by monitoring the script engine executing the test scripts. The hook point
detection step extracts hook point candidates by the application of our modified Smith-Waterman algorithm to
the execution trace obtained in the previous step. After the hook point candidates are obtained, the tap point
detection step extracts tap points and confirms the hook point. The verification step tests the detected hook and
tap points to avoid false positives of script API trace logs. Using the obtained hook and tap points, the final step
inserts hooks into the target script engine and outputs it as a script API tracer.

We define hook and tap points as follows.

—A hook point is the entry of any local function that corresponds to the target script API in a script engine.
—A tap point is defined as any argument of the local function at which the hook point is set.

These definitions are reasonable for well-designed script engines. It is normal for such engines to implement
each script API in the corresponding local functions for better cohesion and coupling. In the implementation,
the arguments of a script API call would be ordinarily passed via the arguments of the local functions. Note
that obfuscations, such as control-flow flattening and unreasonable function inlining, are unusual among our
analysis targets since they are not malicious binaries.

In our method, we let hook points that correspond to target script APIsA beha0 ,ha1 , ... ∈ HA and tap points be
ta0,0, ta0,1, ... ∈ TA whose index of each element indicates the script API and the index of its arguments. Therefore,
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Fig. 3. Hook and tap points in generic design of script engine.

f : M ×C ×A→ IA × RA ⇒ f : M ×C ×A→ HA ×TA. Also, we let a set of test scripts be s0, ... ∈ S and the
execution traces corresponding to it be es0 , ... ∈ ES .

We locate hook and tap points in a generic script engine for better understanding of what our method is
analyzing. Figure 3 depicts generic design of script engines and the hook and tap points in its virtual machine
(VM). Recent script engines generally use a VM that executes bytecode for script interpretation. The input script
is translated into the bytecode through the analysis phase, which is responsible for lexical, syntactic, and semantic
analysis, and the code generation phase, which is responsible for code optimization and generation. The VM
executes VM instructions in the bytecode that are implemented as VM instruction handlers by using a decoder
and dispatcher. The script APIs, which are generally implemented as functions, are called by the instructions.
The hook points are placed at the entry of the functions and the tap points at the memory corresponding to
the arguments of the hooked functions. Somestudies [9, 18, 25] identified VM instruction handlers; however,
to the best of our knowledge, no studies have been conducted regarding identification of script APIs and their
arguments.

3.2 Preliminary: Test Script Preparation

Test scripts used with our method have to fulfill the following four requirements.

(1) A test script executes the target script API with no error.
(2) A test script only has the behavior relating to the target script API. It is also allowed to execute script

APIs essential for executing the target script API. For example, if the target script API is Invoke (i.e., COM
method invocation), CreateObject is essentially required.

(3) Two test scripts are required to analyze one target script API. One calls the target script API only once
and the other calls it N times. Note that N is a predefined parameter.

(4) The arguments of the target script API are arbitrarily defined as long as the script API is not skipped when
it is executed multiple times. For example, executing CreateObject multiple times with the same argument
may be skipped because copying the existing object instead of creating a new object is a better approach.

A test script works as a specifier of the target script API, which our method analyzes. Therefore, it contains
only the target script API. For example, when one wants to analyze the local functions regarding the script API
CreateObject and obtain the corresponding hook point, the test script only contains a call of CreateObject such
as in Listing 2.
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Listings 2 and 3 show an example of test scripts for the script API of CreateObject in VBScript. As shown in the
scripts, they fulfill the four requirements of the test scripts. They call the target script API CreateObject with no
error (requirement 1) and only have the behavior relating to it (requirement 2). They are two test scripts in which
one calls the target script API only once and the other calls it three times (requirement 3). The different arguments
of WScript.Shell, MSXML.XMLHTTP, and ADODB.Stream are chosen for each call of the target script API so that
the calls are not skipped even when they are called multiple times (requirement 4). These test scripts have to be
manually prepared before the analysis. Writing test scripts requires knowledge of the language specifications
of the target script language, which does not conflict with the assumption given in Section 2.4. The amount of
human effort required for preparing test scripts is evaluated in Section 5.8.

Since this preparation (manually) converts the target script APIs into the corresponding test scripts, it provides
a map д : A→ SA.

Listing. 2. Example of test script for CreateObject in VBScript that calls once.

Listing. 3. Example of test script for CreateObject in VBScript that calls three times.

3.3 Execution Trace Logging

This step acquires the execution traces that correspond to the test scripts for the target script APIs by executing
and monitoring the script engine binary. Therefore, it provides a map h : M ×C × SA → ESA

. An execution trace
with our method consists of an API trace and branch trace. The API trace contains the system APIs and their
arguments called during the execution. This trace is acquired by inserting code for outputting logs by API hooks
and executing the test scripts. The branch trace logs the type of executed branch instructions and their source
and destination addresses. This is achieved by instruction hooks, which inserts code for log output to each branch
instruction. This step logs only call, ret, and indirect jmp instructions because these types of branch instructions
generally relate to script API calls.

3.4 Hook Point Detection

The hook point detection step uses a dynamic analysis technique called differential execution analysis. This
analysis technique first acquires multiple execution traces by changing their execution conditions then analyzes
their differences. A concept of this step is illustrated in Figure 4. It is assumed that an execution trace with one
script API call differs from another with multiple calls only in the limited part of the trace regarding the called
script API.

Since we use a branch trace in this step, its analysis granularity is code block-level. Therefore, this step is even
effective for script APIs that do not call system APIs. For example of such script APIs, Eval in VBScript, which
only interacts with the script engine, does not need to call system APIs. Also, script APIs regarding COM method
invocation does not call system APIs. Therefore, system-level monitoring, which uses system API calls as a clue,
cannot observe the behavior of these script APIs. However, our method is effective even for these script APIs
since this step is independent from system API calls.
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Fig. 4. Concept of hook point detection by differential execution analysis.

This step uses multiple test scripts, i.e., one that calls the target script API once and the other(s) that calls
it multiple times, as described in Section 3.2. This step differentiates the execution traces acquired with these
test scripts and finds the parts of the traces related to the target script API that appears in the difference. This
differentiation is done by finding common subsequences with high similarity from multiple branch traces. Note
that this common subsequence is defined as a subset of branch traces, which appears once in the trace of the
test script that calls the target script API once and appears N times in the trace of one that calls it N times. To
extract these common sequences, our method uses a modified version of the Smith-Waterman algorithm bor-
rowed from bioinformatics. The Smith-Waterman algorithm performs local sequence alignment, which extracts
a subsequence with high similarity from two or more sequences. However, we have a problem in that it does not
take into account the number of common subsequences that appeared; therefore, we modified it to take this into
account.

We first explain the original Smith-Waterman algorithm, then introduce our modified version. The Smith-
Waterman algorithm is a sequence alignment algorithm based on dynamic programming (DP) that can detect a
subsequence of the highest similarity appearing in two or more sequences. This algorithm uses a table called a
DP table. In a DP table, one sequence is located at the table head, another is located at the table side, and each
cell contains a match score. A match score F (i, j ) of cell (i, j ) is calculated based on Equation (1), where i is the
index of rows and j is the index of columns.

F (i, j ) =max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

0
F (i − 1, j − 1) + s (i, j )
F (i − 1, j ) + d
F (i, j − 1) + d,

(1)

where

s (i, j ) =

{
2 (match)
−2 (unmatch)

(2)

d = −1 (3)

Our modified algorithm is the same as the original up to filling all cells of the DP table. We provide an example
of a DP table in Figure 5 for further explanation. A sequence of A, B, and C in this figure indicates one of the gray
boxes in Figure 4. The letter S indicates the white box that appears at the start of the execution trace, whereas E
indicates the white box at the end. The letter M denotes the white boxes that appear between the gray boxes as
margins.

Although, these elements actually consist of multiple lines of branch trace logs; they are compressed as A, B,
and so on, for simplification. The original Smith-Waterman algorithm only finds the common subsequence of the
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Fig. 5. Modified Smith-Waterman algorithm.

highest similarity (S, A, B, and C with dotted line in Figure 5) by backtracking from the cell with the maximum
score (the cell with score 8 in Figure 5). After finding one such sequence, it exits the exploration.

After this procedure, the modified Smith-Waterman algorithm performs further exploration. Algorithm 1
shows our modified Smith-Waterman algorithm. This algorithm repeatedly extracts subsequences of high sim-
ilarity from the rows that are the same as the common subsequence extracted with the original algorithm (i.e.,
the dashed rounded rectangle in Figure 5). This is done by finding the local maximum value from the rows and
backtracking from it.

The modified algorithm repeats this procedure N times to extract N common subsequences (the three dotted
circles in Figure 5). If the similarity among the subsequences exceeds the predefined threshold, the algorithm
detects the branches constructing the subsequence as hook point candidates. Otherwise, it examines the cell
with the next highest score. Algorithm 1 shows the detail of the modified Smith-Waterman algorithm.

This step provides a map k : ESA1 × ESAN
→ HA where SA1 ⊂ SA indicates the test scripts that call the target

script API once and SAN does those that call twice.

3.5 Tap Point Detection

The tap point detection step plays two important roles. The first is to select the final hook points from the hook
point candidates obtained in the previous step. The second is to find the memory regions that should be dumped
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ALGORITHM 1: Modified Smith-Waterman algorithm

Require: seq1, seq2,N , threshold
Ensure: result_seqs
dptbl ⇐ DPTable(seq1, seq2).fillCell()
i ⇐ 1

repeat

result_seqs ⇐ []

max_cell ⇐ dptbl .searchNthMaxCell(i )
max_seq ⇐ dptbl .backtrackFrom(max_cell )
result_seqs .append(max_seq)
rows ⇐ dptbl .getSameRows(max_seq)j ⇐ 1

for n = 1 to N do

repeat

max_cell ⇐ dptbl .searchNthMaxCellInRows(j, rows )
max_seq ⇐ dptbl .backtrackFrom(max_cell )
j ⇐ j + 1

until isNotSubseq(max_seq, result_seqs )
result_seqs .append(max_seq)

end for

min_similarity ⇐ 1.0

for seq1 ∈ result_seq do

for seq2 ∈ result_seq do

similarity ⇐ calcSimilarity(seq1, seq2)
if similarity < min_similarity then

min_similarity ⇐ similarity
end if

end for

end for

i ⇐ i + 1

untilmin_similarity > threshold

into logs. Such memory regions have two patterns: arguments and return values of script APIs. This step provides
a map l : M ×C × SA × HA → TA.

3.5.1 Argument. This step adopts a value-based approach that finds the matched values between the test
script and the memory region of the script engine process. If an argument value of the script APIs in the test
scripts also appears in a specific memory region, the location of the memory region is identified as a tap point.

Tap point detection for arguments of script APIs is carried out by exploring the arguments of the local functions
detected as hook point candidates. To do this, this step acquires the execution trace again with hooks inserted
into the hook point candidates obtained in the previous step. The arguments of the hook point candidates are
available by referring to the memory location based on the calling convention. Since the type information (e.g.,
integer, string, and structure) of each argument is not available, further exploration requires heuristics.

Figure 6 illustrates the exploration heuristics used with this step. First, if an argument of a hook point candidate
is not possible to be dereferenced as a pointer (i.e., the pointer address is not mapped), this step regards it as a
value of primitive types. Otherwise, this step regards it as a pointer value and dereferences it. When an argument
is regarded as a value, we consider the value as the various known types including the known structures for
matching. In addition, this step also regards a pointer as the one pointing a structure with the predefined size
and alignment to explore the unknown user-defined structures. As a result of this exploration, if the arguments
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Fig. 6. Concept of tap point detection.

in the test script are observed as the arguments at a hook point candidate, this step regards the candidate as
legitimate and determines the memory region of the argument as a tap point.

This exploration is improved if the type information is available. Therefore, this step may explore the mem-
ory regions more precisely by applying research conducted on reverse-engineering type information such as
Laika [10], Type Inference on Executables (TIE) [29], Howard [43], Reverse Engineering Work for Automatic
Revelation of Data Structures (REWARDS) [31], and Argos [56] or that on predicting type information such as
Debin [20] and TypeMiner [33].

3.5.2 Return Value. There are two problems with tap point detection for return values of script APIs. The first
is that return values in test scripts tend to have low controllability. As mentioned in Section 3.5, tap point detec-
tion uses matching between the values in a test script and those in script engines. If a value in a test script is hardly
controllable (e.g., it will always be 0 or 1), its matching would be more difficult than that with controllable values.

The second problem is a gap between a script and script engine. Due to this gap, how a variable is managed in
a script and script engine may differ. This makes the return values in scripts and actual values in script engines
different. For example, an object in a script engine returned by an object creation function may be returned as
an integer that indicates the index of an object management table in scripts.

We use value-based detection in a similar manner as tap point detection for arguments. The difference is the
entry point of the exploration. Since return values of script APIs may be passed through the return value and
output arguments of the corresponding function in the script engine, the proposed method begins to explore from
them. If the return value in the test script does not appear in the script engine, the proposed method tentatively
regards the return value of the hook point function as that of script APIs.

3.6 Hook and Tap Point Verification

After hook and tap point detection, verifying their effectiveness is an important step. We define false positives
(FPs) and false negatives (FNs) in the context of script API tracing regarding hook and tap points as follows. FPs
indicate the log lines of called script APIs that are NOT actually called by the target script regarding the hook
and tap points. FNs indicate the script APIs missing in the log lines, which are actually called by the target script.

Figure 7 shows an example case that produces an FP. In this figure, the hook and tap points for script API A

are set at the function dispatch and its argument, which are actually shared between script API A and script API

B. The hook with the points can log script API A calls; however, a call of script API B is also logged incorrectly at
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Fig. 7. False positive case.

the time script API A is called. Therefore, this hook is inappropriate since it produces FPs. This problem is caused
by the fact that the proposition “hook and tap points are appropriate→ a correct script API log to a test script
is available” is true, whereas its converse is false. For many hook and tap points and test scripts, the converse
is also true. However, a counter example shown in Figure 7 exists. Since our method implicitly depends on the
converse, it would be a pitfall that causes the FP case on rare occasions. To avoid this, this step verifies the hook
and tap points selected for a script API and reselects the others from the candidates if the FPs are produced
during verification. The verification uses multiple scripts called verification scripts that call the target script.
The only requirement of these scripts is that they contain a call of the target script API whose arguments are
comprehensible. Therefore, since verification scripts do not have to fulfill the complexed requirements like test
scripts, they are automatically collectable from websites on the Internet such as official documents of the target
script language and software development platforms like GitHub [17]. Note that since the verification depends
on the corrected verification scripts, it reduces FPs on a best effort basis. This step first extracts the script API
calls and their arguments from the corrected scripts. Since benign scripts corrected from the Internet are not
generally obfuscated, the extraction is done with no difficulty by static analysis. This step then executes the
scripts with the generated script API tracer to obtain analysis logs. If the difference between the script API calls
extracted from the verification scripts and those from the analysis logs is observed, the verification is failed and
the other hook and tap point candidates are reselected. Through this step, our method can experimentally select
the hook and tap points that produce fewer FPs.

3.7 Script API Tracer Generation

We use the hook and tap points obtained in the above steps for appending script API trace capability to the target
script engines. By using the maps h,д,k, l that are provided in the above sections and the inputs of our method
B (i.e., (M,C )) and A, the method can construct the map of the goal f : M ×C × SA → HA ×TA. Therefore, this
step can use the hook and tap points that corresponds to the target script APIs obtained with the above steps.
Our method hooks the local functions that correspond to the hook points and inserts analysis code. Note that
a hook point indicates the entry of a local function that is related to a script API, as mentioned in Section 3.1.
The analysis code dumps the memory of the tap points with the appropriate type into the analysis log. This code
insertion is achieved using generic binary instrumentation techniques.
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Although execution trace logging step uses instruction-level hooking, script API tracer generation step gen-
erates script API tracers by using function-level hooking. The former step requires instruction-level hooking for
exhaustively capturing all branches executed in the script engine binaries. However, as the definitions of hook
and tap points in Section 3.1 indicate, they are located at the function entry and its arguments; the latter step is
done only with function-level hooking.

4 IMPLEMENTATION

To evaluate our method, we implemented it in a prototype system called STAGER, which is a script analyzer
generator based on engine reversing. STAGER uses Intel Pin [32] to insert instruction-level hooks into the target
script engine for acquiring execution traces.

Intel Pin is a dynamic binary instrumentation framework that uses dynamic binary translation with a VM.
STAGER enumerates symbols of the system libraries in the target script engine process and inserts hooks into
them for obtaining called system APIs and their arguments. It also hooks an instruction ins executed in the target
script engine process when one of the following conditions is true.

—INS_IsIndirectBranchOrCall(ins) && INS_IsBranch(ins)}
—INS_IsCall(ins)
—INS_IsRet(ins)

As mentioned in Section 3, our method hooks detected hook and tap points with function-level hooking. Al-
though Intel Pin also provides a function-level hooking feature with dynamic binary translation, it generally has
a heavier overhead than the one with inline hooking. Therefore, STAGER uses Detours [39], which provides an
inline hooking feature, for generating script API tracers. Detours is a dynamic binary instrumentation frame-
work that enables inline hooking of functions. Although its main target of hooking is Windows APIs, it is also
applicable to hook local functions that have known addresses and arguments. Our script API tracer is imple-
mented as a dynamic link library (DLL), which is preloaded into the process of the target script engine. It reads
the configuration file in which hook and tap points are written and inserts inline hooks regarding them into the
script engine with Detours. It is universally applicable to various script engines by using the corresponding con-
figuration files. Since STAGER automatically detects the hook and tap points and outputs it to the configuration
file, the script API tracer is easily generated for the script engines that STAGER analyzed.

5 EVALUATION

We conducted experiments on STAGER to answer the following research questions (RQs).

—RQ1: What is the accuracy of hook and tap point detection with STAGER?
—RQ2: How much performance overhead does STAGER introduce to generate a script API tracer?
—RQ3: Is the STAGER-generated tracer applicable to malicious scripts in the wild?
—RQ4: How many FPs and FNs does the script API tracer, generated with STAGER (STAGER-generated

tracer), produce?
—RQ5: How well does the STAGER-generated tracer work compared with existing analysis tools?
—RQ6: How much overhead do the STAGER-generated tracers produce?
—RQ7: How much human effort is required to prepare test scripts?

5.1 Experimental Setup

Table 2 summarizes the experimental setup. We set up this environment as a VM. One virtual Central Processing
Unit (CPU) was assigned to this VM.

Although STAGER is more beneficial for proprietary script engines, we applied it to both open source and
proprietary script engines. Open source engines are used because we can easily confirm the correctness of the
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Table 2. Experimental Environment

OS Windows 7 32-bit
CPU Intel Core i7-6600U CPU @ 2.60GHz
RAM 2GB
VBA VBE7.dll (Version 7.1.10.48)

VBScript vbscript.dll (Version 5.8.9600.18698)
VBScript vbscript.dll (ReactOS 0.4.9)

PowerShell PowerShell 6.0.3

hook and tap points. Note that the source code is only used for confirming the results, and STAGER did not
use it for its analysis. Therefore, the analysis with STAGER is done in the same manner as that of proprietary
script engines. In addition, proprietary engines are used to confirm the effectiveness of STAGER for real-world
proprietary engines.

For open source script engines, we used VBScript implemented in ReactOS project [38] and PowerShell
Core [47], which is an open source version of the PowerShell implementation. We selected these script en-
gines for the experiments because both have open source implementation of proprietary script engines and their
supporting languages are frequently used by attackers for writing malicious scripts. For VBScript of ReactOS, we
extracted vbscript.dll from ReactOS and transplanted it into the Windows of the experimental VM environment
because Intel Pin used by STAGER does not work properly on ReactOS.

For the proprietary script engines, we used Microsoft VBScript and VBA implemented in Microsoft Office.
These script engines were also selected because they are widely used by attackers. When we analyze the script en-
gine of VBA, we first execute Microsoft Office and observe its process during the execution of the attached script.

5.2 Detection Accuracy

To answer RQ1, we evaluated the detection accuracy of the hook and tap point detection steps. We detected
hook and tap points of VBA, VBScript, and PowerShell using STAGER. We selected script APIs that are widely
used by malicious scripts for the target of hook and tap point detection. VBA and VBScript were designed to use
COM objects for interacting with the OS, instead of directly interacting with it. Therefore, malicious scripts using
VBA and VBScript use script APIs related to COM object handling. In addition, VBA has useful script APIs and
VBScript has those of reflection such as Eval and Execute, used for obfuscation. PowerShell has script APIs called
Cmdlets that provide various functionalities including OS interaction. We selected Cmdlets of object creation,
file operation, process execution, internet access, reflection, and so on, which are often used by malicious scripts.
We set 0.8 as the threshold of the similarity of subsequences used for differential execution analysis-based hook
point detection. This threshold was defined on the basis of the manual analysis of the DP tables in a preliminary
experiment conducted separately from this one. Because the DP tables had a similar pattern, we found this
threshold could be used globally.

Table 3 shows the results of the experiments. The Original Points column shows the number of branches
obtained by the branch traces. The Hook Point Candidates column shows the number of hook point candidates
filtered by hook point detection. The Hook and Tap Point Detection column has ✓ if the final hook and tap points
were obtained. The Log Availability column has ✓ if the obtained hook and tap points output the correct log
corresponding to the known scripts.

For VBA and VBScript, STAGER could accurately detect all hook and tap points that can output logs showing
the script APIs and their arguments. Despite the large number of obtained branches, STAGER could precisely filter
the branches that are irrelevant to the target script APIs. This showed that STAGER is applicable to real-world
proprietary script engines to generate the corresponding script API tracers.
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Table 3. Result of Hook and Tap Point Detection

Hook Point Hook and Tap
Script Script API Original Points Candidates Point Detection Log Availability

VBA

CreateObject 93,000,090 53 ✓ ✓
Invoke (COM) 101,993,701 98 ✓ ✓

Declare 94,281,492 34 ✓ ✓
Open 85,641,170 42 ✓ ✓
Print 90,024,821 29 ✓ ✓

VBScript

CreateObject 390,836 48 ✓ ✓
Invoke (COM) 1,148,225 92 ✓ ✓

Eval 369,070 121 ✓ ✓
Execute 371,040 134 ✓ ✓

VBScript

(ReactOS)

CreateObject 89,213 32 ✓ ✓
Invoke (COM) 128,511 43 ✓ ✓

Eval - - Not applicable Not applicable
Execute - - Not applicable Not applicable

PowerShell

New-Object 210,852 54 ✓ ✓
Import-Module 185,192 48 ✓ ✓
New-Item (File) 198,327 93 ✓ ✓

Set-Content (File) 200,822 54 ✓ ✓
Start-Process 152,841 119 ✓ ✓

Invoke-WebRequest 315,380 98 ✓ ✓
Invoke-Expression 271,054 82 ✓ ✓

STAGER could also detect CreateObject and Invoke on VBScript of ReactOS. However, it was not applicable for
detecting the hook points of Eval and Execute because the VBScript in ReactOS has just mocks of them, which
have no actual implementation.

We checked the source code to confirm the corresponding location of the detected hook points. The hook was
inserted into the local function of create_object, which definitely creates objects. We found that the hook was
inserted into the local function of disp_call, which is responsible for invocation of the IDispatch::Invoke COM
interface.

As shown in Table 3, STAGER also detected proper hook and tap points for PowerShell. A notable difference
among the script engines of PowerShell and the others is the existence of an additional layer: a common lan-
guage infrastructure (CLI). PowerShell uses a CLI of the Microsoft .NET Framework, which is an additional layer
between the OS and script engine. Since STAGER properly found the hook and tap points of PowerShell with
bytecode analysis, we confirmed that it works even for script engines with an additional layer such as a CLI
layer.

Overall, STAGER could properly detect all hook and tap points in all VBA, VBScript, VBScript (ReactOS), and
PowerShell script engines except Eval and Execute of VBScript (ReactOS), which were not implemented.

5.3 Performance

To answer RQ2, we evaluated the performance of STAGER by measuring the execution duration of each of its
steps. Figure 8 shows the results. Note that the execution time in this figure does not include the time for prepar-
ing test scripts because it should be manually created before the execution.
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Fig. 8. Execution duration of our method.

Execution trace logging and tap point detection required about 10 seconds due to the overhead of execution
and log output with Intel Pin. Backtrace performed just a little exploration of execution trace; therefore, it took
little time. On the other hand, differential execution analysis took about 5 seconds. The computational complexity
of the Smith-Waterman algorithm is O (MN ), where the length of one sequence is M and the other sequence is
N . Thus, the longer the execution trace becomes, the longer the execution duration will be.

Overall, hook and tap point detection for one script API took about 30 seconds. The total number of script APIs
in a script language, for example in VBScript, is less than one hundred according to the language specifications,
and the script APIs of interest for malicious script analysis are limited. Therefore, the proposed method could
quickly analyze script engines and generate a script API tracer, which is sufficient for practical use.

5.4 Analysis of Real-world Malicious Scripts

To answer RQ3, we applied the script API tracers generated by STAGER for analyzing malicious scripts in the
wild. We collected 205 samples of malicious scripts that were uploaded to VirusTotal [1] between 2017/1 and
2017/7. We then analyzed them using the script API tracers.

We found that the script API tracers could properly extract the called script APIs and their arguments executed
by the malicious scripts. We investigated the URLs obtained as arguments of script APIs. All were identified as
malicious (positives > 1). We also investigated the file streams of the script API arguments. The results of this
investigation indicated that the streams were ransomware such as Dridex. We also confirmed that the script API
tracers generated by STAGER are applicable to real-world malicious scripts.

We selected four samples and their analysis logs as case studies. The first is a VBA Injector, the second is
a VBScript downloader, the third is a PowerShell fileless malware module, and the last is an evasive malicious
script.

5.4.1 Case Study 1: VBA Injector. Figure 9 shows the analysis log of a VBA injector generated by a script API
tracer. This malicious script uses the Declare statement that loads a library and resolves a procedure in it to call
Windows APIs. It first creates a process of rundll32.exe in a suspended state. It then allocates 0x31c bytes of
memory with write and execute permission and writes code of the size to the memory byte-by-byte. Finally, a
remote thread that executes the written code in the process is created. As shown in the figure, the script API
tracer could generate a log that only contains the APIs called from the input script through the Declare statement,
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Fig. 9. Analysis log of VBA injector acquired with STAGER-generated script API tracer.

Fig. 10. Analysis log of VBScript downloader acquired with STAGER-generated script API tracer.

whereas the system API tracer in Figure 1 generated one containing APIs called from both the input script and
script engine. This can significantly help analysts comprehend the behavior of malicious scripts.

5.4.2 Case Study 2: VBScript Downloader. Figure 10 shows the analysis log of a VBScript downloader
generated by a script API tracer. Although this malicious script has 1,500+ lines of obfuscated code, the log
consists of only 16 lines, which are responsible for the main behavior of downloading. Section (1) in the figure
shows a part of the log in which the malicious script accessed a URL. Section (2) shows that the script saved
the HTTP response to a specific file in the Temp folder. The saved buffer is also visible as a byte array of 0x3c
0x68 .... Section (3) shows that the saved file was executed through cmd.exe. As shown in this figure, the script
API tracers generated by STAGER could successfully extract important indicators of compromise (IOCs) such as
URLs, binaries, file paths and executed commands. Note that the log fulfills the requirement of the preservability
of semantics mentioned in Section 2.2.

5.4.3 Case Study 3: PowerShell Fileless Malware. Figure 11 shows an excerpt of the analysis log of a module
used by PowerShell fileless malware. This module seems to retrieve additional PowerShell modules from the
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Fig. 11. Analysis log of PowerShell fileless malware acquired with STAGER-generated script API tracer.

Fig. 12. Analysis log of evasive malicious script acquired with STAGER-generated script API tracer.

C&C server and execute it. Section (1) in this figure shows the spawn of a new PowerShell process with com-
mands used for Web access. We can see the executed command in deobfuscated form. Section (2) shows the
simple downloading of the additional code using a system Web proxy. Section (3) shows the execution of the
retrieved additional PowerShell code with the reflection function Invoke-Expression. In addition to Case Study 1,
we can understand what code is dynamically evaluated by reflection functions. This will help malware analysts
understand the behavior of malicious scripts.

5.4.4 Case Study 4: Evasive Malicious Script. Although STAGER-generated script API tracers have no anti-
evasion feature, it can even help analysts understand the root cause of evasion. To demonstrate this, we chose
an evasive malicious script obtained from VirusTotal and analyzed it with a STAGER-generated script API tracer.
Figure 12 shows the analysis log of the evasive sample in VBA. Due to the evasion, the only behavior captured
by the tracer was sending a ping to a host and obtaining its status code through winmgmts, which is WMI.
However, the analyst can even obtain a clue that the status code may be relevant to the evasion mechanism. As
Yokoyama et al. [54] suggested, evasive malware (including malicious scripts) have to obtain information of the
executed environment (in this case, the status code) to determine whether they run or evade. In general, script
API invocation is required for achieving it in terms of malicious scripts. Therefore, the tracer can help analysts
to reveal evasive mechanisms of malicious scripts.

5.5 False Positives and False Negatives

To answer RQ4, we tested the number of FPs and FNs produced by the hook and tap points of the STAGER-
generated script API tracers by analyzing known malicious scripts.

We know we could evaluate only partial FPs and FNs; however, we conducted this because exhaustively eval-
uating the number of FPs and FNs is difficult. FPs indicate the log lines of called script APIs that are NOT actually
called by the target script regarding the hook and tap points. FNs indicate the script APIs missing in the log lines,
which are actually called by the target script regarding the hook and tap points.

The script API tracers used for this experiment have tracing capability of the script APIs shown in Table 3.
We used five samples whose called script APIs are known from manual analysis. The results indicated that the
hook and tap points produced neither FPs nor FNs.
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Table 4. Comparison with Existing Tracers

Tracer Observed behaviors Log lines Failure rate
API Monitor 0.25 10,000+ 0
ViperMonkey 0.8 16 0.6

STAGER-generated 1 20 0

5.6 Comparison with Existing Tracer

To answer RQ5, we compared STAGER-generated script API tracers with two existing tracers: API Monitor [5]
and ViperMonkey [28]. API Monitor is a system API tracer based on system-level monitoring. We enabled all
system API hooks of API Monitor and made it observe the target script engine process. ViperMonkey is a script
API tracer for VBA based on script-level monitoring using the VBA emulator.

To evaluate them under the same condition, we gathered VBA malicious scripts since ViperMonkey is a tracer
of the scrip APIs of VBA. Therefore, we generated a script API tracer for VBA with STAGER (STAGER-generated
tracer). We randomly chose five samples from the dataset and manually analyzed them to create ground truth.
The evaluation was conducted from three viewpoints: amount of properly observed behavior, average number
of log lines, and analysis failure rate.

Table 4 shows the results of the experiment. Note that the results in the columns of observed behavior and
log lines of ViperMonkey were calculated only with the samples that were analyzed successfully. API Monitor
could only observe a small amount of behavior because some behavior such as COM method invocation and
reflection cannot be directly observed through system APIs. In addition, it produced a large number of log lines
that are irrelevant to the behavior of the samples because it cannot focus only on their behavior. The log lines
include the behavior derived from the script engines, as well as that derived from the samples. In other words,
the avalanche effect mentioned in Section 2.3.2 occurred.

ViperMonkey failed to analyze three samples due to insufficient implementation of the VBA emulator. When
it failed to parse the samples, it terminated execution with an error. ViperMonkey missed some behavior because
of the lack of the hooked script APIs. The STAGER-generated tracer did not fail to analyze the samples. This is
because it uses the real script engine of VBA and its instrumentation does not ruin the functionality of the engine.
It could observe the entire behavior with few lines of logs that properly focused on the script APIs of the samples.

5.7 Performance of Generated Script API Tracer

To answer RQ6, we evaluated the performance of the STAGER-generated script API tracers. We measured the
execution duration of the script API tracers while analyzing the test and malicious scripts. In addition, we mea-
sured that of vanilla script engines for comparison. We measured the execution duration from the process start
of the script engine until its end. Since VBA malicious scripts do not terminate the process even after script
execution, we inserted the code that explicitly exits the process.

Figure 13 shows the result of these measurement. The analysis with the STAGER-generated script API tracers
took 1.51, 0.62, and 1.27 seconds per file (sec/file) on average for VBA, VBScript, and PowerShell malicious
scripts. Overall, it takes about 1.2 sec/file in average. Therefore, the STAGER-generated script API tracers can
analyze about 72,000 files per day per VM instance. Note that the time required for reverting the VM was not
taken into account.

The STAGER-generated script API tracers have only about 10% overhead compared with vanilla script engines.
This result is natural because the STAGER-generated script API tracers require additional time only when the
script APIs are called, which costs little overhead of memory and file input/output (I/O) operations for logging.
This shows that the STAGER-generated script API tracers can execute malicious scripts almost as quick as vanilla
script engines, which in turn indicates that the STAGER-generated script API tracers are quick dynamic analysis
tools.
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Fig. 13. Execution duration of STAGER-generated script API tracers and vanilla script engines.

Table 5. Lines of Code (LOC) of Test Scripts

Script languages Average LOC

VBA 3.8
VBScript 2.75

PowerShell 2

5.8 Human Effort

To answer RQ7, we conducted an experiment to evaluate the amount of human effort required to prepare test
scripts. We evaluated this from two perspectives: lines of code (LOC) of test scripts and required time to create
them.

We gathered 10 people (eight graduate students, one technical staff member, and one visiting researcher)
belonging to the computer science department as the participants of this experiment. We then explained the
concept and requirements of the test scripts described in Section 3.2 to them. We asked them to write valid test
scripts while measuring the required time. The list of script APIs to be written in the test scripts are provided
to them in advance. The list, which is composed of script APIs frequently used by malicious scripts, is identical
to the one used for the evaluation of the detection accuracy in Section 5.2. Many did not have experience of
writing the script languages of VBA, VBScript, and PowerShell. Therefore, we asked them to spend some time
learning the language specifications since we assume that test script writers have knowledge on the target
language. Note that we confirmed that all the created test scripts argued below are valid with STAGER.

Table 5 shows the average LOC of the created test scripts for each language. The LOC of the test scripts for each
language are within the range of 2 to 3.8. This indicates that test scripts that our method uses are just simple ones.

Figure 14 shows the average time required for creating test scripts for each language. The average required
time per script API was 36.6 seconds for VBScript, 42.6 seconds for VBA, and 42.6 seconds for PowerShell. The
average time for all languages was about 59.5 seconds. These results indicate that writing valid test scripts takes
less time for programmers who have knowledge of the target script language. Therefore, the amount of human
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Fig. 14. Required time for test script preparation.

effort required for using STAGER is much less than manual reverse-engineering of script engines since manual
reverse-engineering requires weeks or months of analysis time.

6 DISCUSSION

6.1 Limitations

We discuss four cases in which our method cannot detect hook and tap points. The first is that in which the
target script API does not have arguments to which we can set arbitrary values. Since tap point detection uses
argument matching, which is based on setting unique arguments, this detection fails in principal if this matching
is not available.

The second is that in which the target script API contains only a small amount of program code. In this case,
hook point detection by differential execution analysis might not be applicable because the difference is not well
observed. However, since it is difficult for such simple script APIs to achieve significant functionality, they would
not be interesting targets for malware analysts.

The third is that the script engine is heavily obfuscated for software protection. For example, when the control
flow graph is flattened to implement the script engine with one function, the proposed method cannot accurately
detect hook points. Nevertheless, such obfuscated implementation is rarely seen in recent script engines, to the
best of our knowledge.

The last is script APIs that produce false positives and are rarely used in the real-world scripts. As described
in Section 3.6, verification scripts are required to reduce the false positives. However, if the script APIs are rarely
used, collecting the verification scripts from the Internet is difficult. Since the verification is best effort basis that
depends on the collected verification scripts, such script APIs would be a limitation of our method.

6.2 Just-In-Time Compilation

Many existing script engines have Just-In-Time (JIT) compilation functionality that translates repeatedly exe-
cuted bytecode into native code for accelerating its execution. We investigated JIT compilation mechanisms of
existing script engines to understand how this JIT compilation affects hook and tap points of script APIs. The
mechanisms indicate that the existence of script API inlining is key. We thus discuss both patterns below: JIT
compilation with and without inlining of script APIs. Figure 15 shows a generic mechanism of JIT compilation
without inlining. As shown in the figure, this mechanism only translates bytecode regarding VM instructions into
native code. In this case, the native code continues to call the script APIs implemented in the script engine. There-
fore, the script API hooks properly work without changing the hook and tap points even after JIT compilation.
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Fig. 15. Generic mechanism of JIT compilation without inlining.

Fig. 16. Generic mechanism of JIT compilation with inlining.

Figure 16 shows a generic mechanism of JIT compilation with inlining. This mechanism inlines the called script
APIs into the native code generated by JIT compilation. During JIT compilation, the code that is implementing
the called script APIs is copied into the native code. When the inlined script APIs are executed, the script APIs in
the script engine at which the script API hooks are set are not called. Therefore, hooking the hook and tap points
generated with our method cannot acquire script API trace logs. This problem is solved by slight modification
for tracking the copy of script APIs and propagating the corresponding script API hooks.
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Overall, our method is not affected by JIT compilation, or even it is affected, we can handle it with a slight
modification on the implementation of the generated script API tracers. Therefore, JIT compilation is not a
limitation of our method.

6.3 Human-assisted Analysis

Although our method introduces automatic detection of hook and tap points, it is also helpful for its analysis
to be assisted by humans. In particular, human-assisted analysis is beneficial for the case in which tap point
detection does not work in principal. One such case is that human assistance can eliminate the first limitation
discussed in the previous section. Our method identifies tap points by matching values in test scripts and func-
tions arguments in script engines without taking into account any semantics regarding the values. However,
manual analysis can take into account the semantics of values. Therefore, it is possible to discover tap points
using the semantic information even when value matching is not available. In addition, since manual analysis by
humans can provide better type information of variables by analyzing how the variables are used, the exploration
for tap point detection becomes more accurate with human assistance.

Note that the burden of manual analysis with our method is much less than complete manual analysis. This
is because the number of functions that should be analyzed becomes much less by hook point detection, as
described in Table 3. Without hook point detection, a reverse-engineer has to analyze thousands of functions
to obtain tap points, whereas only tens of functions should be analyzed when it is performed with hook point
detection.

7 RELATED WORK

7.1 Script Analysis Tools

There is a large amount of research on constructing script analysis tools. There are multiple script analysis
tools that adopt script-level monitoring. The tool jAEk [36] hooks JavaScript APIs by overriding built-in func-
tions. It inserts hooks on open/send methods of XMLHttpRequest objects and methods regarding HTMLEle-
ment.prototype to obtain URLs accessed by Ajax communication. Practical script analysis tools such as Rev-
elo [24], box-js [7], jsunpack-n [19], and JSDetox [46] also use script-level monitoring. These tools offer strong
script behavior analysis capability on JavaScript. However, they do not fulfill the requirements mentioned in
Section 2.2 because they deeply depend on the language specifications of JavaScript.

There are also script analysis tools based on script engine-level monitoring. Sulo [21, 22] is a instrumentation
framework for Action Script of Adobe Flash using Intel Pin. It is based on the analysis of the source code of the
Actionscript Virtual Machine (AVM). JSand [2] hooks built-in methods of JavaScript by implementing a specific
emulator. FlashDetect [49] modifies an open source script engine of Flash for their hooks. These are examples
of script engine-level monitoring. ViperMonkey [28] is an emulator of VBA, which can output logs of notable
script APIs.

For system-level monitoring, many binary analysis tools that can hook system APIs and/or system calls such
as API Chaser [26], Alkanet [35], Ether [12], Nitro [37], CXPInspector [51], IntroLib [11], and Drakvuf [30] are
available. However, none of these tools can fulfill the requirements introduced in Section 2.2.

7.2 Script Engine Enhancement

Chef [4, 6] is a symbolic execution engine for script languages. It uses a real script engine for building a symbolic
execution engine. It achieves symbolic execution of the target scripts by symbolically executing the script engine
binaries with a specific path exploration strategy. The design is similar to that of STAGER in that it reuses the
target script engine for building a script analysis tool by instrumentation. On the other hand, the approaches
and goals with Chef are different from those of STAGER. Its approach is based on manual source code analysis,
whereas we used binary analysis. In addition, the goal with Chef is building symbolic execution engines, whereas
ours is building script API tracers.
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7.3 Virtual Machine Introspection

Several techniques were developed for mitigating the semantic gap between the guest OSes and the VM monitor
(VMM). Their goal is to observe the behavior within the guest OSes through the VM by mitigation, which is
called VM introspection (VMI).

Virtuoso [14] automatically creates VM introspection tools that can produce the same results as a reference
tool executed in a VM from the out-of-VM. Virtuoso first acquires execution traces by executing the reference
tool in the VM. This step is referred as training. It then extracts a program slice, which is only required for
creating the tool. This method is similar to ours in that it extracts required information by analyzing formerly
acquired execution traces. It differs from ours in its application target as well as the algorithm it uses to extract
information from execution traces.

VM-Space Traveler (VMST) [16] is a system that can automatically bridge the semantic gap for generating VMI
tools. It achieved the automation of the VMI tools generation, while Virtuoso, one of the state-of-the-art studies
at that time, is not fully automated. Its key idea is to redirect the code and data executed on the machine of intro-
spection target to another machine prepared for VMI for obtaining the execution results. This idea depends on the
key insight that the executed code for the same program is usually identical even across different machines. To do
this, VMST identifies the context of the system call execution and the data redirectable to the machine for VMI.

Tappan Zee (North) Bridge [13], or TZB, discovers tap points effective for VM introspection. It monitors mem-
ory access of software inside a VM with various inputs for learning. It then finds tap points by identifying the
memory location where the input value appears. It is used to monitor the tap points in real time from the out-
of-VM for achieving effective VM instrospection.

Hybrid-Bridge [41] is a system that uses decoupled execution and training memorization for efficient
redirection-based VMI. The decoupled execution is a technique to decouple heavy-weight online analysis
that uses software-based virtualization from light-weight hardware-based virtualization. It uses two execution
components: Slow-Bridge and Fast-Bridge. Slow-Bridge extracts meta-data using online data redirection like
VMST on a VM with heavy-weight software-based virtualization for training and memorizes the trained
meta-data (called training memorization). Fast-Bridge uses the meta-data for VMI on a VM with light-weight
hardware-based virtualization. Only when the meta-data is incomplete, the execution on Fast-Bridge falls back
to Slow-Bridge.

AutoTap [55] automatically discovers tap points inside an OS kernel for monitoring various types of accesses
to kernel objects such as creation, read, write, and deletion. It dynamically tracks kernel objects and their prop-
agation starting from its creation while resolving the execution context, the types of the arguments, and the
access types. It then dumps these meta data into a log file. After the tracking, it analyzes the log file to discover
the tap points of interest to introspection.

Overall, the goal of the studies above, mitigating the semantic gap around the VM, is similar to ours. In addition,
the approaches of some studies to find the tap points are similar to ours; however, their targets (i.e., OS kernels
and VMMs) and algorithms are different from ours.

7.4 Reverse Engineering of Virtual Machine

Since our method analyzes VMs of script engines for obtaining hook and tap points, we present existing research
regarding reverse engineering of VMs. Although no VM analysis study in terms of script engine VMs has been
conducted, there have been studies conducted regarding software protection and malware analysis.

Sharif et al. [42] proposed a method of automatically reverse engineering VMs used by malware for obfusca-
tion. They used data flow analysis to identify bytecode syntax and semantics as well as the fundamental charac-
teristics of VMs. Since script engines that our method analyzes are generally based on such VMs, their goal of
automatically analyzing the VMs is similar to ours. However, their analysis target is different from ours. Their
method identifies information about VMs and bytecode, whereas our method detects the local functions that
corresponds to script APIs.
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Rolles [40] provided a method of circumventing virtualization-obfuscation used by malware with a running
example of the common software protector VMProtect [45]. The method generates optimized x86 code that is
equivalent to bytecode by reverse-engineering VMs, producing a disassembler for VM instructions, and optimiz-
ing with intermediate representation (IR). This study showed that protection by virtualization-obfuscations is
evaded by such analysis. However, it assumed manual analysis implicitly and its automation was not considered
in that article.

Coogan et al. [9] proposed an approach to identify the bytecode instructions responsible for invoking system
calls. Since system calls are strongly relevant to malware behavior, their goal was to approximate the behavior
by the set of the identified bytecode instructions involved in the invocation of the system calls. Their goal,
focus, and approach differed from ours mainly for the following three points. First, their goal was approximating
the behavior of malware obfuscated by VMs, whereas ours is mitigating semantic gaps between script APIs and
system APIs or system calls. Second, their focus was only on the bytecode instructions relevant to the invocation
of system calls, whereas ours was all script APIs regardless of the existence of system calls. Finally, their approach
strongly relied on the invoked system calls and arguments, whereas ours relied only on the branch instructions
logged with test scripts.

Kinder et al. extended static analysis to make it applicable to programs protected by virtualization-obfuscation.
Their method, called VPC-sensitive static analysis, extended conventional static analysis with abstract interpre-
tation whose states are location-sensitive (i.e., sensitive only to the program counter (PC)). Their analysis is
sensitive to both PC and VPC and enables us to analyze VMs properly, whereas the conventional analysis suffers
from over-approximation on states. Although their method of static analysis is different from ours of dynamic
analysis, applying it combined with ours might be beneficial.

VMAttack [25] deobfuscates virtualization-obfuscated binaries based on automated static and dynamic analy-
sis. Its goal is to simplify the execution traces acquired from the target binaries. It first locates VM instruction han-
dlers by dynamic program slicing; and clustering then maps bytecode instructions to the corresponding native
assembly ones by analyzing the switch-case structure of the VM. The disassembled bytecode is optimized through
stack based IR (SBIR) and only the important instructions are presented to reverse-engineers as simplified code.

Nightingale [18] translates virtualization-obfuscated code into host code such as x86 via dynamic analysis. It
locates the dispatcher and handlers of VM instructions by clustering acquired execution trace. This approach
is similar to ours in that the aim is to recognize specific functions implemented in a VM (i.e., VM instruction
handlers in the Nightingale and script APIs in our method). However, it differs from ours regarding the two
points. First, it discovers VM instruction handlers, while ours finds local functions corresponding to scrip APIs.
Second, it only recognizes while ours clarifies what function corresponds to what scrip API.

VMHunt [53] is a deobfuscation tool that first handles partially virtualized binaries. It first detects the bound-
aries between the virtualized snippets and the native snippets by finding context switch instructions in the
acquired execution trace and identifies VM instructions by clustering. It then extracts the virtualized kernels,
which have the global behavior that affects beyond the boundaries, and symbolically execute them with mul-
tiple granularities for reverse engineering them. The analysis of partially virtualized binaries is significantly
important for analyzing real-world malware. However, since such binaries are rarely seen among script engines,
their motivation differs from ours.

Overall, most of existing studies on reverse-engineering VMs focused on virtualization-obfuscation mainly
used by malware. The virtualization-obfuscators only translate instructions of original binaries into VM instruc-
tions and rarely provide APIs to the binaries. Therefore, none of the existing studies focused on API function
identification while many were conducted to recognize VM instructions. In addition, the bytecode of script en-
gine VMs is arbitrarily operable by changing input scripts while that of virtualization-obfuscated binaries is not.
To the best of our knowledge, our research is the first that proposes a reverse-engineering method taking such
operable case into account.
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7.5 Differential Execution Analysis

Carmony et al. [8] proposed a method that uses differential analysis of multiple execution and memory traces for
identifying tap points of Adobe Acrobat Reader. The traces are logged on condition that PDFs with JavaScript,
Well-Formed PDFs, and Malformed PDFs are input to the reader. Based on the differential analysis of the traces,
the method identifies tap points that enable the extraction of JavaScript as well as those that represent the
termination and error of input file processing.

Zhu et al. [57] used differential execution analysis to identify the blocking conditions used by anti-adblockers.
They accessed websites and logged the traces of JavaScript execution with and without an adblocker. They then
analyzed the traces to discover branch divergences caused by the adblocker and identified the branch conditions
that cause the divergences.

Although they used differential execution analysis the same as with our method, their focus (Adobe Acrobat
Reader and JavaScript in websites) was different from ours (i.e., script engines). In addition, our differentiation
algorithm (i.e., the modified Smith-Waterman algorithm) is different from those used in the above studies be-
cause their target problems to solve were also different from ours (i.e., identification of the commonly appeared
sequences).

7.6 Feature Location

Feature location techniques aim to locate the module implementing a specific software feature, which are studied
in software engineering. Although their target (i.e., source code) is different from ours (i.e., binaries), some studies
use differential analysis of execution traces the same as ours.

Wilde et al. [50] proposed a method called software reconnaissance, which locates software features by com-
paring execution traces obtained on condition that the feature of interest is active and inactive.

Wong et al. [52] presented an approach that compares execution slices instead of execution traces. Because
the slices include data related to a feature of interest, their approach takes data flow into account in addition to
control flow.

Eisenbarth et al. [15] presented an approach that addresses a problem of the difficulty of defining a condition
that activates exactly one feature. Their approach uses the dynamic analysis of binaries combined with the formal
static analysis of the program dependency graph and source code. Koschke et al. [27] extended their work by
enabling them to handle statement-level analysis instead of their method-level one.

Asadi et al. [3] proposed a method that adopts techniques of natural language processing to analyze source
code and comments in it, in addition to the analysis of execution traces.

Since the underlying motivation of understanding programs and the basic approach of comparing multiple
execution traces are common among their studies and ours, our method can be regarded as feature location
whose target is a binary.

8 CONCLUSION

In this article, we focused on the problems of current dynamic script analysis tools and proposed a method
for automatically generating script API tracers by automatically analyzing the binaries of script engines. The
method detects appropriate hook and tap points in script engines through dynamic analysis using test scripts.
Through the experiments with a prototype system implemented with our method, we confirmed that the method
can properly append script behavior analysis capability to the script engines for generating script API tracers.
Our case studies also showed that the generated script API tracers can analyze malicious scripts in the wild.
Appending more effective script analysis capabilities is for future work.
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